-A121 360 RUTOHRTION OF QUALITY MEASUREMENT(U) GENERAL ELECTRIC 1/2
CO UURNYYALE CALIF J A MCCALL ET AL. SEP 82
RADC-TR-82-247 F30682-79-C-8267

UNCLASSIFIED F/G 972 . NL

A A 0 SN

o pi
TR
— m

s Bt bis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAY OF STANDARDS - 1963~ A

g

RADC-TR-82-247
Final Technical Report
) Ssptember 1982

O
c

ADA12]

General Electric Company

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

James A. McCall
David Markhaom
- " ROME AIR DEVELOPMENT CENTER
0 AIR FORCE SYSTEMS COMMAND
, GRIFFISS AIR FORCE BASE NY 13441
i
K
FE
Iy

AUTOMATION OF QUALITY MEASUREMENT

s

US ARMY INSTITUTE FOR RESEARCH IN
MANAGEMENT INFORMATION
AND COMPUTER SCIENCES
ATLANTA GA 30332

8§2 11 1o

VR rmepmme gy

I
£ T O e B
N REG
<% NOV 151982 . ;

&

021

e T T T T T T T T T T TR T T T T O s T Tr T T T e s e s e

, This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-TR-82-247 has been reviewed and is approved for publication.

q JOSEPH CAVANO
Project Engineer

APPROVED: /Za, % *

ALAN R. BARNUM k
Assistant Chief '

L Command & Control Division b 1

Y

’ e /7 FOR THE commnznﬂogy /o 7\414_,

b sennT o

1 | = | '
s i JOHN P. HUSS

Acting Chief, Plana Office

| If your address has changed or if you wish to be removed from the RADC.

! mailing list, or if the addressee is no longer employed by your organization,]
l please notify RADC. (COEE) Griffiss AFB NY 13441. This will assist us in

| maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.’

-

el o Lk o CB A SR s s -y

UNCLASSIFIED _

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

T I R ‘*'—j

2

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

NUM

RADC-TR-82-247

2. GOVY ACCESSION NO.

2-A4/3/

3. RECIPIENT'S CATALOG NUMBER

36a

4. TITLE (and Subtitle)

AUTOMATION OF QUALITY MEASUREMENT

S. TYPE OF REPOAT & PERIOO COVERED
Final Technical Report

Sep 79 - Sep 81

6. PERFORMING OG. REPORYT NUMBER

N/A

Yo AUTHOR(a)

James A. McCall
David Markham

8. CONTRACT OR GRANT NUMBER(2)

F30602-79-C-0267

o

7. PECRFORMING ORGANIZATION NAME AND ADDRESS
General Electric Company - Western Systems
1277 Orleans Drive
Sunnyvale CA 94086

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

63728F
25280201

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT OATE
September 1982

Rome Air Development Center (COEE)
Griffiss AFB NY 13441
uom'romvg: Aatﬁci faut & ADORESS(I{ difterent from Contralling Otfice)

Same as bloc and:
US Army Computer Systems Command/AIRMICS

13. NUMBER OF PAGES

164

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

Georgia Institute of Technology
Atlanta GA 30332

8a. DECLASSIFICATION/ OOWNGRADING
SCHEOULE
N/A

e e ———— R —
16. DISTRIBUTION STATEMENT (or thiz Report)

Approved for public release; distribution unlim

ited.

Same

17. DISTRIBUTION STATEMENT (of the abatrect entered in Block 20, Il ditlerent from Report)

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Joseph P. Cavano 3

USACSC Project Engineer: Daniel E. Hocking (4

15) 330-7834

04) 894-3111

19. KEY WORDS (Continue on reverse side il necessary and ldentify by block number)

Software Quality
Quality Metrics

Software Measurement
Software Tool

O. ABSTRACT (Continue on reverse side If necessery and identily by block number)

and provides for automated collection of softwa
data, and provides processing and reporting to

product.
processes COBOL source code. .-

N

A prototype software system has been developed which allows manual input

metric information to monitor and control the quality of a software
The software system, call the Automated Measurement Tool,

re metric data, stores the
facilitate use of the

EDITION OF 1 NOV 63 IS onsouﬁ

0D ,an'ss 1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

20 8% wisarasatararts p—
- . P .‘;...-‘-.‘...‘.'

SECUMTY CLASSIFICATION OF TWIS PAGE(When Dote Bntered)
P S

UNCLASSIFIED

]

-y oLttt
CRT e e
e PR .

UNCLASSIFIED
SECUYRITY CLASSIFICATION OF Tu't 3AGE(When Date Entered)

I P SR

Section

TABLE OF

INTRODUCTION & « « v v o o & &
1.1 IDENTIFICATION.
1.2 SCOPE « v v v o v 0 v v
1.3 ORGANIZATION OF DOCUMENT.
1.4 APPLICABLE DOCUMENTS. . .
1.5 EXECUTIVE SUMMARY

BACKGROUND OF SOFTWARE METRICS

DEVELOPMENT OF THE AMT , . . .
3.1 CONDUCT OF THE PROJECT. .
3.2 NEED FOR AUTOMATION . . .
3.3 OPERATIONAL CONCEPT ., . .
3.4 DESIGNOF AMT

3.4.1

3.4.2 DESIGN APPROACH. .

CONTENTS

-

DESIGN GOALS OF AMT,

3.4.3 USER ORIENTED CONCEPT.
3.5 IMPLEMENTATION APPROACH . . .

3.6 AMT TEST. L) L] L L] L] * L L]
3.7 AMT TRAINING.

AMT DESCRIPTION. &
4.1 OQVERVIEW. « &
4.2 EXECUTIVE SERVICES. . . .

4.2.1

COMMAND LANGUAGE

4.2.2 GENERAL CONVENTIONS FOR ENTERING A
4.3 DATA BASE MANAGEMENT SERVICES

4. 3.] DATABASE DESIGN. L d . L] L] L] L] L] L]
4.3.2 FILE SPECIFICATION CONVENTIONS .

COMMAND

.

Page

1-1

1-1
1-1
1-1
1-2

2-1

3-1
3-1
3-4
3-9
3-10
3-12
3-15
3-16
3-17
3-17

4-1
4-1
4-3
4-3

4-5
4-5
4-11

-3

-4

PR OO U S O e’ N U P S D R |

-
ﬁf TABLE OF CONTENTS 5.4
L‘ Section Page :
E; 4.4 AUTOMATED MEASUREMENT SERVICES. « o o o o o o o o & & -1
- 4.4.1 AUTOMATED MEASUREMENT OF SOURCE CODE 4-1
3 4.4.2 AUTOMATED AID TO MANUAL MEASUREMENT OF METRICS 4-14
!. 4.4.3 USE OF OTHER AUTOMATED TOOLS » o « o o o « . . 4-15
3 4.5 REPORT GENERATION SERVICES. + v o o o o o o o o o o & 4-16 .
8 4.5.1 MODULE REPORT. + o . o o v o v o e oo v o 4-16 =
- 8.5.2 METRICREPORT. & v v v v o o o o o o o o o o 4-16 -
L 8.5.3 EXCEPTION REPORT « o o v v o o o o o v o v o 4-16 =
& 4.5.4 QUALITY GROWTH REPORT. . . v o v o v o v v o . 4-17 -]
% 4.5.5 NORMALIZATION REPORT & + v v o o o o o o o « & 4-17 =
5 8.5.6 STATISTICS REPORT. + v & o o o o o o o o o o s a-17 g
ﬁi 8.5.7 SUMMARY REPORT .« & & v v o o o o o o o o o o s 4-17 =
3 8.5.8 WORKSHEET REPORT « v v & o v o o o o o o o o & 4-17 B
- 8.5.9 MATRIXREPORT. + « v v v v v o v o o oo oo 4-17 B
2 4.5.T0 REPORT SUMMARY . . . v v v v v v e e o o o o . 4-18 ﬁ”i
1. 5 RESULTS OF QUALITY METRIC EXPERIMENT . o o o o o o o « o & 5-1 " 1
é 5.1 INTRODUCTION. « o v o o o ¢ o o « o « o o o o ¢ o o« 5-1 :
- 5.2 QUALITY GOALS FOR THE AMT DEVELOPMENT 5-2 -]
i! 5.2.1 STATEMENT OF WORK RELATED QUALITY GOALS. . . . 5-2 ij
3 5.2.2 SPECIFIC QUALITY GOALS ESTABLISHED 5-2]
¥ 5.2.3 APPLICATION METHODOLOGY. . « o o o o & & « . . 5-6 =
. 5.2.4 DESIGN AND IMPLEMENTATION GUIDELINES 5-7 ;
£ 5.3 APPLICATION OF WORKSHEETS o v o « o o o o o o o o + & 5-7 e
I 548 RESULTS o o v o o o v o o o o o s o oo nneeens 5-8 o
2 5.4.1 REQUIREMENTS AND DESIGN. + « o o « o o o « o & 5-8 3
< 5.4.1.1 General Observation At Requirements]
i and Design « o ¢« ¢ v o 0 0 0 e .. 5-8 oR
5 5.4,1,2 Metric SCOres « « o « o o o o o o o 5-10 e
-]
3 ;
& —
[2
[i]
4 1
an -1
S
L o o o

¢ 3
g TABLE OF CONTENTS]
¥ Section , Page ~ 2]
! 5’4.2 IMPLEMENTATION e &6 o o s o o 0 e o o o & 0 o o 0 5-]3 .
N 5.4.2.1 Gene al Observations At Implementation. 5-13 oL
- 5.4.2.2 Metrics SCOres. « « o« o o ¢ o ¢ o o o o 5-13
5.4.2.3 Comparison With Quality Goals 5-15]

5.4.1.3 Comparison with Quality Goals 5-10 b 1

5.5 COMPARISON OF AMT METRIC SCORES WITH PAST EXPERIENCES . 5-24 i

5-6 EXPERIMENT CONCLUSIONSo ¢ o o ¢ 8 5 o o & 0 o o o & o 5-26 '_

o]

6 FUTURE DEVELOPMENT © 8 o 0 0 0 & 2 ¢ ¢ o o 2 o 0 o o e 0 0 @ 6'1 .

7 REFERENCES o v o o v o o o o oo n e nonncnenneaas T- s

. s

Appendix A

A SAMPLE REPORTS o & o v v o o o o o o o o o o o s o o o o » A-1 o

-

B CONVERSION OF AMT FROM VAX 11/780 TO HONEYWELL 6000. B-1 ‘iiﬁg;_]

B'] INTRODUCTION @ 6 & o o 6 & o & o o © 6 6 o o o o o o B-z "1

B'z CODING STANDARDS. @ e o & 8 ¢ o o 5 o o o O o e o ° o 8-3 ..::

B-3 VAX TO H6000 TRA"SFER TAPE. ® & & & o 8 o & 0 e o o+ o o 8-7 ::- ~_.:

B4 VAX LISTINGS. « v ¢ o « o o o o o o o o ¢ o o o o o o B-9 o

L2

C DBMS SURVEY. ¢ & o ® 6 & & o o & » e o e & s o e st 0 e e o 0 c-] :‘1

C-1 PURPOSE e o o o © 6 ©6 & ¢ & ° & 5 o 6 0 & 0 ¢ o e & & o c-z .‘_\:

C-2 THE PROBLEMS OF USING MDQS. + « « v « ¢ ¢ o o o o o o & c-3

C-3 ALTERNATIVE DBM'S FOR CONSIDERATION IN FUTURE _,._,’

AMT VERSIONSo ® © o o o o e o & o o 6 o s 0 0 s v e o o C-S ":'_

D TOOL SURVEY. ® o o 6 & o o e & o s e & 0 o o 0 0 s o s o o o D-] -;

D"] PURPOSE.....l...l...l.......... 0-2 :~.4

D-2 CODING AND IMPLEMENTATION: METRICS APPLICABILITY . . . 0-3 .

D-3 MATRIX OF SOFTWARE TOOLS. « « o ¢ ¢ ¢ o ¢ ¢ o o o o o & D-7 .

0'4 TOOLS USED. e @ & o 5 8 & ° & 8 s 2 O 0 0 " P O o 0 o 0 D‘]S 3

iid '

bl

—
T

RN A

Ont N S SRt

b el BT

........

Table

Number

3.4.1-1
4.4.1-1
5.2.2-1
5.2.2-2
5.2.2-3
5.4.1.1-1

5.4.1.2-1
5.4.2.2-1
5.4.2.3-1
5.4.2.3-2
5.4.2.3-3
5.5-1
B2-1

B2-2

C3-1

€3-2

€3-3

C3-4

C3-5

C3-6

C3-7

......

LIST OF TABLES

Software Quality Factors .« « ¢ ¢ ¢« ¢« ¢ ¢ o ¢ ¢ o o &
Automated Metric Data. . o o ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o o
Software Quality Requirements Survey Form.
Quality Requirements for AMT (In Order of Ranking) .
Specific QuUality Goals v o« &+ ¢ o ¢ o o o ¢ o s o o o o o @

Observations Based on Worksheet Inspection of Requirements

Specification and Preliminary Design Specification
Metric SCOTeS. « « o o ¢ ¢ o o o ¢ ¢ o o o 0 0 o o o o
Implementation Metric Scores « v « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o &
Thresholds.

Comparison Of Metric Scores With Specified
Metric Scores Related to Quality Goals . .
Normalization Function Performance
Implementation Metric Score Comparisons. .
Code Standardization . « « « ¢ ¢« ¢ ¢ o & &
System Dependent Function Differences. . .
Data Base Management Systems . . « « . . .

MRI. ® L] L4 L] L] L4 L L L L . L L L L L L L] *

IDMS: CODASYL-Type Data Base Management System.
Total: HOL-Based Data Base Management System. .
IMS: HOL-Based Non-CODASYL Data Base Management
MRDS: Self-Contained Data Base Management System. . . .
MDQS: Self-Contained Data Base Management System. . . .

iv

e B e B S e e B o ——— e w.ln..

[] L]

System.

Page

3-11
4-13
5-3
5-4
5-5

5-9
5-11
5-14
5-16
5-18
5-20
5-25
B-3
B-4
C-6
c-8
c-1
c-13
c-16
c-19
c-23

R TR
L SN .
P 4 PP NP

PR ST Ay

T R RO AR A N REGMAAE N T T A S |
:::]

.

LIST OF ILLUSTRATIONS]

¥

»

Figure .
Number Page o
3.3-] App]ication Of the Metric workSheetS. e e o ¢ o o & o o o o 3-6 _«
3.3-2 AMT Operationa] concept ¢ o o o s & ° e o s 0 ¢ o 8 e o o 3-7 .1
3-3"'3 Support tO Personne]o ¢ o & ¢ o & 5 & & ¢ o O & o s e s o o 3’8
3.4"] AMTH‘ieY‘aY'ChyD’.IagY'am................... 3"]3 ‘.
4,1-1 Services Provided by Functional Areas .« « « « + « & o & « » 4-2 ;;;
4,3-1 Logical Description of AMT Data Base. « « « « o &« o o « « & 4-7 o
4,3-2 Physical Organization of the DataBase. . « « « « ¢ ¢ « & 4-8 g
4.3"3 PO'intel"Tab]e....................... d'g 4
4.3-4 AMTPPOCQSSi"g...............-...-... 4-]0 .‘
A"] WOY'kSheet1........................ A-2 "-_‘
A-2 workSheetza........................ A-4 -
A'3 WOPkSheeth........................ A°8
A-4 NOPkSheet3......-.....-........... A"'z "‘
D3-1 Matrix of Software Tools Having Metric Applicability. . . . D-8 .
D3-2 Software ToOTS SUPVEY « o o o & o o o o o o o s s o o o o D-14 |
D4'] TOO]US&ge........................- 0‘16 ‘
o]

» <

e

-

R

»

".“1

)

=M

)

;|

B

-

'. [

: ™
v

3

k. L S a oA A -

v SRt BN
iy AN

prT——T—
p

PREFACE

This document is a report prepared for the Rome Air Development Center (RADC)
and the US Army Computer Systems Command/AIRMICS in support of the Automation
of Quality Measurement project. It is the final report (CDRL A003) for the
Contract No. F30602-79-C-0267. The purpose of the project was to provide
computer programs, supporting documents, and research results related to the
effort of measuring certain quality characteristics of software.

This report was prepared by J. McCall and D. Markham. Contributions were made
by R. McGindley, M. Hegedus, M. Matsumoto, A. Stone, and M. Stosick.

Technical guidance was provided by Mr. J. Cavano of RADC and supported by Mr.
D. Hocking of AIRMICS.

The objective of this study was to establish and demonstrate a method of
automating the measurement of significant aspects of software aquality.
Conceptually, the method of software measurement through metrics provides a
mechanism in conjunction with a vigorous development program to provide
management a technique to improve the guality of software products.

vi

-

DU UUUUUDSIS S

SECTION 1
INTRODUCTION

1.1 IDENTIFICATION

This document is the Final Report of the research and development tasks
associated with the development of the Automated Metrics Tool (AMT). The
development and construction of this prototype software tool was provided by
GE Western Systems, Sunnyvale, Calif. in compliance with the requirements set
forth by Rome Air Development Center (RADC) and the US Army Computer Systems
Command/AIRMICS for the Automation of Quality Measurement Project, Contract
No. F30602-79-C-0267.

1.2 SCOPE

This document includes a description of the AMT and the results of some
parallel research efforts; the use of AMT on itself to derive quality
measurements of the tool, the design goals of the AMT, the conversion of AMT
from a VAX 11/780 development machine to a Honeywell 6000 series host
environment, and the comparison of metric scores across several projects
including the AMT. Also included is a description of how the AMT could be
used to support a software development activity.

1.3 ORGANIZATION OF DOCUMENT

This section of the document is an introduction to the remainder of the
report. The second section provides a brief description of the background and
appltication of metric concepts referencing previously funded RADC and USACSC
+unded research., The third section will describe how the AMT was developed
and the motivation for developing it. Section 4 is a description of the AMT.
Section 5 describes how we used the AMT during its development to apply
metrics. The Final Section suggests future research in metrics and identifies
enhanced capabilities that should be considered for the AMT.

1.4 APPLICABLE DOCUMENTS

The following documents include those published and distributed by RADC which
are background to this effort and explain in detail the concept and manual
application of software quality metrics, as well as those produced as a result
of this research task:

1-1

m el A moaw s .8 P PO

»
I
[\

¢
r:

McCall, J.A. et al., "Factors In Software Quality". RADC-TR-77-369, June 1977.

McCall, J.A., and Matsumoto, M.T., "Metrics Enhancement Final Report",
RADC-TR-80-109, Volume I, April 1980.

McCall, J.A., and Matsumoto, M.T., “Software Quality Measurement Manual¥,
RADC-TR-80-109, Volume II, April 1980.

The applicable documents produced during the course of this research task,
identified with their associated CDRL item number:

AMT User's Manual A012
AMT Training Material A006
AMT Program Maintenance Manual A013
AMT Functional Description A007
AMT Data Requirement Document A008
AMT Sys./Subsystem Specification A009
AMT Program Specification A010
AMT Data Base Description AO11
AMT Test Plan A015
Test Analysis AO14
AMT Program Maintenance Manual A013

1.5 EXECUTIVE SUMMARY

The concept behind software quality metrics is to provide software acquisition
managers with a mechanism to quantitatively specify and measure the level of
quality in a software product. To provide this mechanism, an acquisition
manager or a software developer must collect data from the products of the
software development process. The actual data items collected are identified
in detail in the "Metric Enhancement Final Report", RADC TR-80-109., This raw
data is then used to calculate metric values which can be used to assess the
quality of the software being produced.

The purpose of the Automated Measurement Tool (AMT) 1is to provide automated
support to the application of the metrics concept. Normally, the metrics data
must be collected by hand in a tedious, error-prone, and time-consuming
process.

1-2

L 1

o s

A .

_—

The intent of the AMT is to automatically collect and store the metric data
economically and reliably and provide a data base of metrics data to
facilitate research and evaluation. This will then allow the acquisition
manager to easily collect and analyze the software quality metric values for
any given software development using the AMT. The AMT data base and reporting
capabilities were used to the extent possible auring the development of the
AMT itself to support application of metrics. This is the first actual
contractual applicatidn of metrics and the 1lessons learned from this
experience are documented in this report.

The current version of the AMT operates on the Honeywell 6180/GCOS computer
system at RADC. It processes COBOL code.

1-3

Lkt AN

Sy

2 A_2 3 A

T T

& Tt 2aaa~ah arvi e

b A e e R SR SRR senk NI

SECTION 2
BACKGROUND OF SOF TWARE METRICS

The basic concepts for the software metrics automatically collected,
calculated, and reported by the AMT were derived during the Factors in
Software Quality contract, contract number F30602-76-C-0417. A framework for
defining metrics [CAVJ78], applying them to all of the products, including
documentation, of a software development, and relating them to management
goals was developed [MCCJ77I]. A preliminary handbook for an Air Force System
Program Office was developed to describe the framework [MCCJ771II]. Initial
validation of some of the metrics was performed using command and control
software systems written in JOVIAL that had 2-4 years of operation and
maintenance data available [MCCJ77I1]. During a subsequent research effort,
the Metrics Enhancement Contract, contract number F30602-78-C-0216, further
validation was conducted using an Army financial management information system
written in COBOL that had been transported to two different vendor's computers
besides the initial development system and a software support system written
in FORTRAN that had been transported to a number of different DEC operating
systems as well as a Honeywell 6000 computer system. At the end of this
effort, validation of metrics related to the quality factors Reliability,
Maintainability, Flexibility, and Portablility was achieved [MCCJ791]. More
importantly, techniques were developed to apply the metrics and derive
information during a software development that facilitated identification of
potential quality problems, areas needing improvement in standards and
conventions, test strategy, and acceptance criteria. An overview of these
technigues was provided in a Software Quality Measurement Manual [MCCJ7811].
Currently, software metrics is one of the most widely investigated subject
areas in the software research community. Many individuals and organizations
are developing metrics related to or extending the metrics developed under the
previously mentioned RADC/USACSC funded research and the pioneering work of
the others ([HALM77], [MCCT76], [BOEB73]}, [CHER], [FAGM76], [FOSL76],
[HESC77]). The significance of this continueds research is not only the
refinement of the set of metrics which can be utilized in the framework
established in the report, “Factors in Software Quality" [MCCJ77], but also
the industry wide experiences being gained in applying and using metrics
during software developments.

2-1

T . - S i) L L

£ et A AN M faio el

vy

v
-i PR
‘

As more organizations apply metrics, more quantitative information is becoming
available about the software being developed. This information supports
research in other software engineering disciplines such as software tools and

development environments, programming languages, design techniques, and cost
estimation. .
e i :
- It is expected that the use of software metrics will become a standard]
‘! contractual instrument to assure a certain level of quality. .'1
This growing recognition by government organizations, further refinement by o
[: the research community, and application experience by a number of R
i‘ organizations makes the introduction of a tool like the AMT timely. p !
[.
P S0
b (] ' T 3
r o 4
3 o
3 -
4
\ v
F .
! '.{‘
F)

i .
-]
p. -
K -
h‘ - 1‘
-
[

L. 4

e "1
{ i
}'. |
3 -1
b \
3 1
[2-2 1
- f
3 |
L :
{“"- T - T T Tt v T oTT e T T

[;
| 9 — . . — - = d

)
,

ST
o e,

SECTION 3
DEVELOPMENT OF THE AMT

3.1 CONDUCT OF THE PROJECT

The AMT project was conducted in four phases: design, implementation,
.asting, and delivery/training. Our motivation and approach to each phase
will be discussed in this section.

3.2 NEED FOR AUTOMATION

At the outset of the project, a specific need was envisioned for a family of
software tools that would support the specification, measurement, and
reporting of software quality metrics. The viability of effective measurement
of software quality has been enhanced by the evolution during the past decade
of modern programming practices, structured, disciplined development
techniques and methodologies, and requirements for more structured, effective
documentation.

The actual measurement of software quality 1is accomplished by applying
software metrics (or measurements) to the documentation and source code
produced during a software development. These measurements are part of the
established model of software quality and through that model can be related to
various user-oriented aspects of software quality.

The current set of metrics utilized in the model which is comprised of 11
quality factors has 39 software metrics. Subsets of these 39 metrics can be
applied during each phase of the development. The breakdown by phase is:

15 can be applied during requirements
34 can be applied during design
38 can be applied during implementation

To calculate this entire complement of metrics, 296 individual data items have

to be collected. Worksheets, described in paragraph 3.2, contain all of the
individual data items. A breakdown by phase of the individual data items fis:

3-1

Tl e e o

J Lo

P

v
A

’
Sl s
PP

LN st e AV et e b

e ——— A
i -,_'.)

i 2 o 2

DadiB 2

P
. I
i AR
v PR S -

) “v el

31 measured during requirements
173 measured during design
_92 measured during implementation
296 Total

A1l of the data items collected during requirements and 102 of the items
collected during design are system level measurements which are taken once.
However, the remaining 71 items collected during design and the 92 collected
during implementation are module level measurements which are taken for each
module in the system. Thus, for even a modestly sized system of 100 modules,
the number of data items to be collected is: '

31 (requirements) + 102 (design) + 100x71 (design)
+100x92 (implementation) = 16,433,

On a particular development project, a subset of these data items relating to
the important quality factors to that development would be collected.

To collect this large a number of data items manually from documentation and
source code is a very time-consuming, error prone, and thus expensive process.

The time consuming nature of manual inspection of source code impacts one of
the important necessary conditions for the gquality assurance effort. For
project management to make the necessary corrections to meet a specified
quality goal, software quality assurance analysts must be able to report
discrepancies as soon as possible after the code is ready for inspection.

Metric data also needs to be archived for developmental, life-cycle and
research reasons. Software quality assurance analysts need to have an overall
view of the metric scores. Researchers need to have a historical record
across projects for comparative purposes. This historical record can most
easily be kept, updated, and transmitted if it is in machine readable form.
This data base can be used in conjunction with other information such as
trouble reports, maintenance records, or cost data to determine if the metric
data correlates with parallel or past events. If an environment is calibrated
through experience, predictions could then be made. All of these capabilities
can be realized if the metric data is placed in a data base.

3-2

".;

PP N

oA

Yl

RSP - Ry ot e)

. v YT

L L

- —— TR W TR T T e T e e T e e D L
B St Bt Sy e e ar—Sg Tl S arin Jaete S amme eni il T e - M N A P

An important ingredient in an effective software quality assurance effort is
to operate in such a fashion that measurement does not interfere significantly
with development, test, or other procedures which are critical in production.
If metric analysis is done by machines the possibility arises to move a
majority of the quality assurance activity off-line of the development
activity.

For these three reasons, the tedious nature of examining source, the need for
storage and retrival of metric data, and the off-line nature of SQA activity,
automation of metric applications is important to software quality metric
jmplementation.

The goals of this project were to make this process more timely, reliable, and
economic. Automating the collection and reporting provides these three
goals. In addition, the data is maintained in a data base for use as a
quality assurance management information system, as an historical record of
the development project, and as a repository for researchers to investigate
combinations of data items to form new metrics.

The prototype version of the AMT, which is described in more detail in Section
4 of this report and referenced project documents, was developed to
demonstrate the effectiveness of these concepts. 25 module level measurements
are automatically collected. Thus, of the 16,433 measurements that could
potentially be required in our previous example, the AMT automates collection
of 2500. The AMT data base accommodates the total complement of data items.
The measurements not taken automatically have to be entered into the data base
manually.

The 25 data items collected automatically represent 27% of the 92 data items
measured during implementation. No attempt was made to automatically measure
any data items related to requirements and design. The reasons are discussed
in the next paragraph.

3-3

-, ST Lo e D L o
NP N RIS L LI T - ey

-
. NPT WIS § ot

L3
PR

&

R

P as

- eaaa’a' 4l

V”‘

1y “' A i A

T

3.3 OPERATIONAL CONCEPT

The need for automated support of the application of the metrics is tempered
by the fact that the metrics we have defined in previously funded RADC and
USACSC projects not only relate to source code but also to material,
specifically documentation, normally available during the requirements and
design phases of a software development. Because, at the present time, there
are few formal requirements or design specification languages widely accepted
or used throughout the software industry and the material produced during
these phases is not produced in machine readable form, this material does not
lend itself to automated measurement. However, we see a trend toward more use
of formal requirements and design representations such as SREM, PSL/PSA, POL
and automated analysis tools relating to them. This trend will allow
expansion of the AMT in terms of automated collection of metric information
during these early stages.

The AMT is a system that is used during all phases of a software development
process: requirements specification, design specification, implementation,
integration and test, and operation. The capabilities provided by AMT are:
automatic collection of specified metric data from machine-readable materials,
facilitation of collection and entry of other metrics data, storage and
retrieval of metrics data, and generation of different reports for use in
tracking software quality. These capabilities are used by four different
types of users: a customer or user of the software system being developed,
the software project's quality assurance analyst, the software development
project manager, and a software gquality researcher.

With these constructs in mind, the automated measurement of software quality
is designed to work in the following way:

(1) At the beginning of a project the auality goals of the project are
stated and desired metric values are determined.

(2) At the conclusion of the requirements phase, worksheet #1 is manually
completed and the data is manually entered into the AMT's data base.

(3) When the preliminary design is completed, worksheet #2a is manually
completed and entered into the data base.

3-4

ISRAMIRSRERS - gEaTublin

e o e o e g

(4) As various detail designs are completed, worksheets #2b are manually
entered for each module. At the conclusion of the design phase an
update to #2a is also manually placed in the data base. Steps 2, 3,
and 4 utilize the Requirements Specification, Preliminary and
Detailed Design documents, test plans, preliminary users manual, and
other material normally available during the requirements and design
phases of a project.

(5) During implementation, as soon as COBOL source code is placed under
configuration management, the source code is measured by the quality
measurement tool and this data is also entered into the data base.
Additional data, identified on worksheet #3 is manually entered.
This application timing is depicted in Figure 3.3-1.

(6) Various updates may be made as required.

(7) At delivery of the software product, it is anticipated that all
metric information would be updated to reflect the current state of
the code and documentation.

(8) At each stage of application, a number of reports would be generated
to provide the appropriate information to various personnel involved
in the development.

One primary purpose of the AMT is to calculate the metric scores from the data
input from the worksheets. These scores can then be compared with desired
scores., This operational concept 1{s depicted in Figure 3.3-2 and s
compatible with the methodology described in the Software Quality Measurement
Manual [MCCJ79]. Additional helpful information is available to support
various decisions, quality assurance activities, and testing activities.
Figure 3.3-3 1identifies the support provided. This support {is described
further in Section 4 where each report is defined.

The potential of the software metric concepts can be realized by their
inclusion in software quality assurance programs. Their impact on a quality
assurance program is to provide a more disciplined, objective approach to
quality assurance and to provide a mechanism for taking a 1ife cycle viewpotint
of software quality. The benefits derived from their application are realized
in 1ife cycle cost reduction.

3-5

i;'._'-_ et

[PV PO UGt SO SO S RO VS SURp N UM ST ST S - SN SO S .

[SR T S SR

VPO O WU S VIO SO VISP Y QP ST S T S I N

N

Ad dad Ad SsA &

LI

-
A Aa

'@
POV SUVOTY

]
o

TR e s s

DEVELOPMENT PHASES

REQUIREMENTS TEST
ANALYSTS DESIGN IMPLEMENTATION | AND
INTEGRATION
—l 1 |
REQUIREMENTS
SPEC
METRTC
PRELIMINARY
MORKSHEET pReLal
: SPEC
USER'S MANUAL
(DRAFT)
DETAILED
DESIGN
SPEC
METRIC
WORKSHEET (BUILD TO) SOURCE
¥ 2a
TEST CODE
PLAN DETAILED
PROCEDURES DESTGN
SPEC TEST
(BUILT TO) RESULTS
USER'S MANUAL
(FINAL)
METRIC
WORKSHEET
#2b
METRIC METRIC
WORKSHEET WORKSHEET
#2a *3
UPDATE

Figure 3.3-1

3-6

METRIC WORKSHEET
#2b
UPDATE

METRIC WORKSHEET
s 2a
UPDATE

Application of the Metric Worksheets

AGABAR AR AL & sl

A

FRGRTIY

.

b

AR R LA As & .A.Jﬁ TN o H . A oy‘W..-...j oy . ibrteid 4....~.. Nl on 4 e - haad w) Pt - ﬂ R s a e oot ﬂ. g ERA s 2 ot
. ' Ters s e . FE- N . STl Ct o t . o

. . . v LN v P Lo e S e AU R <) oo
T S . f T ® e, RN IPLRMNR » . IEEREERE Y I » I

3dasuo) Leuoi3euady Wy 2-¢°¢ 34nby 4

1-noees ‘
All
[}
3007 :
L3NS YyoM
f 14043y 128N0s
NOILd3IX3 —y
19043y STAGNT
JIYLIN
149043y
300
149043y
NOTVZ 1 WWyON 14043y 200 by
WI19044
14043
HIMOYY ::s.w JUYML40S 300 N9YS30
$31 h%wwﬂhuw 4dS/yvs 34n0S SNY1d 1531
14043y
AUVHHNS
140430 SInd[no $3I7nGS
LIS RYOM
14043y
X181V 05
ALIWND

P

Y
o

PERSONNEL

SUPPORT

REPORT TYPE

Program Management

Developers

Quality Assurance

Test

Researchers

Progress with Respect
to Quality Goals

Standard Enforcement
Design Decisions

Standards Enforcement

Compliance with Quality
Goals Problem Identification

Test Strategy
Test Emphasis
Test Effort

Analysis

Figure 3.3-3 Support to Personnel

Normalization
Quality Growth
Matrix
Statistics

Metric
Summary

Metric
Quality Growth
Normalization
Matrix
Module

Metric
Summary
Exception

Quality Growth
Worksheet

PUISR R I Iy

IO T

PUSNNT IS AP T3P {

[y

b~ SRR

e v

YT T T Y Y YT T T T T T

The measurement concepts complement current Quality Assurance and testing
practices. They are not a replacement for any current techniques utilized in
normal quality assurance programs. For example, a major objective of quality
assurance is to assure conformance with user/customer requirements. The
software quality metric concepts described in this report provide a
methodology for the user/customer to specify 1life-cycle-oriented quality
requirement usually not considered, and a mechanism for measuring if those
requirements have been attained. A function usually performed by auality
assurance personnel is a review/audit of software products produced during a
software development. The software metrics provide formality and
quantification to these reviews/audits of the documents and code. The metric
concepts also provide a vehicle for early involvement in the development since
there are metrics which apply to the documents produced early in the
development.

Testing is usually oriented toward correctness, reliability, and performance
(efficiency). The metrics assist in the evaluation of other qualities such as
maintainability, portability, and flexibility.

During the initial design phase of the AMT project, an informal requirements
definition and operations concept reflecting the discussions in this paragraph
were documented to ensure a common understanding between the RADC and USACSC
project offices and the development team. These concepts were presented at a
review at RADC. The informal requirements definition and operations concept
were not called for in the statement of work, but were developed to supplement
the requirements described in the statement of work. They were not formally
delivered.

3.4 DESIGN OF AMT

The product of the design phase of the AMT project was a Design Plan, CDRL
A001. The Design Plan contained a detailed design of the AMT, a Data Base
Specification, a tool survey and a DBMS survey, the implementation schedule,
and the plan for applying metrics to the AMT development. Each of these steps
in the design of the AMT will be described in this section.

PPN Iy

[y amrn an s S0t 0 Badh St S A RN Mt Sate o Tind P it A sl Ctadi S i i 3 R AR A

3.4.1 DESIGN GOALS OF AMT 1
There were specific design goals identified for the AMT prototype. A highly
g usable tool that could eventually operate in a number of environments in
“ conjunction with other software and project management tools was desired. The i
software quality measurement framework was used to identify the design goals.
Table 3.4.1-1 provides the formal definitions of the quality factors, from]
which three were chosen to be emphasized during the development of the AMT.]

At

. 4
The statement of work identified Portability, Flexibility and Interoperability

as important quality goals to be emphasized in the AMT development. They were]

identified as important because of the following facts: .
y
(1) Portability was considered to be important because the AMT was 5
developed for a Honeywell H6180/GCOS computer but may eventually be @
transported to Honeywell H6180/MULTICS, IBM 370/0S, and PDP]
11/70/™ environments. y |

(2) Flexibility was an important design consideration because the AMT is
a prototype and additional reguirements will be forthcoming. Also the
tool will eventually be used in a variety of environments, and have
to process other languages besides COBOL. p !

(3) Interoperability was important because in any particular environment
where the AMT might be used, other software tools might be available I
that are sources of metric information. We would want to be able to
easily interface the AMT with these other tools to take advantage of ’
the metric information the other tools collect automatically. ‘

3-10

Table 3.4.1-1 Software Quality Factors

FACTORS DEFINITIONS

CORRECTNESS gExtent to which a program statisfies its
specifications and fulfills the wuser's
mission objectives.

RELIABILITY Extent to which a program can be expected
to peform its intended function with
required precision.

INITIAL
PRODUCT EFFICIENCY The amount of computing resources and code
OPERATION required by a program to perform a function.

INTEGRITY Extent to which access to software or data
by unauthorized persons can be controlled.

USABILITY Effort required to learn, operate, prepare
input and interpret output of a program.

LIFE
CYCLE MAINTAINABILITY Effort required to locate and fix an error
STAGES in an operational program.
PRODUCT
REVISION TESTABILITY Effort required to test a program to insure
it performs its intended function.

FLEXIBILITY Effort required to modify an operational
program,

PORTABILITY Effort required to transfer a program from
one hardware configuration and/or software
system environment to another.

PRODUCT . .

TRANSITION| RESUABILITY Extent to which a program can be used in
other applications - related to the
packaging and scope of the functions that
programs perform.

INTEROPERABILITY £ffort required to couple one system with

another.

1 .., RILERER
\ . .
PRSP .
et g e N

ts a2 2d

aih

stars A0, 1 JCA J e g b
SV AR

L s Al
.

LA AN M ok o 4 2 S AL o aahCatehese R S asy of

3.4.2 DESIGN APPROACH
Specific design approaches were taken to satisfy these quality goals.

In part the modularity of the system design enhances the gqualities of
flexibility and portability. The AMT was divided into six functional
subsystems: the Executive Services (EXS), the Data Base Management Services
(DMS), the Automated Measurement Services (AMS), the Preprocessing Subsystem
(PPS), the Report Generation Services (RGS), and the AMT Utility Services
(UTL) as illustrated in the AMT hierarchy diagram shown in Figure 3.4-1.

The EXS provides the interface between the user and the AMT. The EXS
interprets the user's commands and performs all of the necessary calls to the
other AMT functions that actually carry out the actions requested by the
user. To provide greater portability the AMT has its own Data Base Management
Services (DMS). The DMS provides the capability to store and retrieve metric
data from a random access file. The data base is described in more detail in
Section 4 and in the Data Base Description Document, CDRL AO11. The primitive
operating system dependent functions of: opening a file, closing a file,
reading a record from the file, and writing a record into the file are
performed by the AMT Utility Services (UTL). These functions were isolated to
facilitate modification for transporting the system to other environments.
The Automated Measurements Services (AMS) extracts certain metric information
directly from the COBOL source code. The Preprocessing Subsystem (PPS) is
provided soley to support AMS functions. This subsystem has no direct
interface to the user and is accessed only by the AMS., The basic function is
a generalized parsing system to take source code input by an AMT user and
generate parse trees representing that code.

The parse tree is then used by the AMS functions to produce values for the
metrics worksheets. It should be noted that the preprocessing functions
perform %heir own data management services, independent of the DMS functions.
The reason for this separation is that the data that AMS and DMS functions
individually manipulate are completely different in form and content and the
AMS functions are the only functions that use or manipulate that particular
type of data. The use of a generalized parsing function is a key design

-

A L .

. .

. v

ﬁ

!
1«\
h o+ . . - .inx

e a=rraial

/

PRI

¢- ASL01L

ke P 2 AR B A & s de M o ey A A s aues
oo S - PR
P e PR RERAn

ST

d_J. PR A3 T

BY WRRRI I

weabeiq AYd4RAdtH IWY L-¥°€ 34nbyy

Sdd
WI1SASHAS
INISSII0NI Nd

S
W3Lsaans
NOI LVH3INID
19043Y

SHa
un WILSASANS
SITLINLN INIHIVNVW
V1va

SHY

WILSASANS
JHIHFUNSVIN

(31vio LW

SX3
JALLNDIXI
WV

1001
INRNSVIN Q3VIHOINY
10102

3-13

-

[EPSEF W WPV AP VI LIPS TP I AT W SR S

ERM A Rt

choice. By describing the grammar of a language other than COBOL and
developing a scanner for that language, the parser will produce a parse tree
representation that can be used by the remainder of the AMT functions with
minor modification. Finally, the various metric reports and statistical
analyses are performed by the Report Generation Services (RGS). We designed
our own data management routines primarily to enhance the portability of the
system. We conducted a Data Base management System survey on the target
environments (HG180/GCOS, HG180/Multics, IBM 370/0S, PDP 11/70/IAS) to
evaluate the portability issues. Certainly if one DBMS had existed on all
four environments our portability problems with respect to data would have
been solved. However, this was not the case and, in fact, our analysis
determined that developing our own data management routines would be much less
expensive than having to convert from one DBMS to another when we wanted to
move the AMT to another environment. The goals of the Data Management
Services were:

o The data base must be portable not only in the transfer of the data
base functions from one machine to another, but the data within the
data base needs to be portable for research reasons.

The data must be easy to access and insert.

The user must be able to enter and exit the data base with ease.

The data base needs to be highly maintainable.

The data base needs to be accessible by other software tools in a given
software development environment.

o No on-line access via a general query language was provided.

Appendix C contains the results of the DBMS survey.

3-14

PR Y S Sy S S S S I N . ta - s - . . R

r—

P Cos i SRR
- - - s PRAPEIE SN N e e ts

Rt ™ SRS ALVENEREN

rr-vtfd

e

R e e e s v e T, G . s .

Interoperability was designed into the system primarily through the data base
design. By providing routines to manipulate the data with respect to the AMT
data base, the output of other software tools could be accessed and inserted
into the AMT data base. Thus if the AMT was being used in an environment
where PSL/PSA was utilized, the output of PSA could be searched by a software
routine and appropriate data extracted and inserted into the AMT data base.
We conducted a tool survey to identify potential tools for interfacing with
the AMT., Several potential tools were identified. The results are in
Appendix D.

During the design phase, an implementation schedule was developed. The
approach taken will be described in the next paragraph. Also, during the
design phase, we began applying metrics to the development effort. This
application was an experiment to assess the effectiveness of applying metrics
during a development. The approach and results of the experiment are in
Section 5 of this report.

The actual design of the AMT was conducted using structured design
techniques. The design of the system was iteratively decomposed to more
detailed descriptions of the subsystems shown in Figure 3.4-1 and eventually
to detailed designs of each module. Hierarchy charts for each subsystem were
generated, HIPO diagrams were constructed for each module, and program design
language descriptions (PDL) of the logic were prepared. The PDL used was an
Ada-1ike 1language developed by General Electric. Complexity measures were
automatically calculated from the PDL's. These metrics were utilized during
design team walkthroughs to evaluate the overall complexity of the design.
The design was documented in the Design Plan (CDRL AOO1) and in part in the
System/Subsystem Description Document (CDRL A009).

3.4.3 USER ORIENTED CONCEPT

Experience with software quality metrics has pointed out that a variety of
personnel have use of the metric data for a variety of reasons. Program
Managers are interested in the progress of a project with regard to quality
goals. Developers use metric data to aid design decisions and enforce
standards. Test personnel use the data to determine test strategies,
emphasis, and level of effort.

A
Cmah

'
4

;.4.‘;‘,.1 4'-‘-""14-'45

- .

LR M o an aun o o

a 2 a0

G ‘_"‘,". MhaCha

"'."'v'v‘ e e v

“"ﬂfﬁr ~

"y

S Ch il fnt-Saiad SR e S A T e ity ——- T ——— ——

The quality assurance staff monitors and reports on violations to standards,
goal achievement, and quality compliance. Researchers are typically
interested in historical data.

Given these variety of users, ranging from sophisticated to uninitiated, from
experienced to untrained, the tool was designed with the following
charateristics in mind:

e Transparent: The actual operations of the tool should not interfere
with the use of the tool.

o System independent: The user should have to use a minimum of system
language to use the tool.

e Forgiving: The tool should have the capability of trapping errors and
recovering gracefully to minimize the impact on the user.

o Helpful: The software should carry as much interactive training
functions as possible within the tool.

e User flexible: For the experienced user of the tool, options should be
available to increase the speed with which the user can interact with
the system,

o In general the tool should be “user friendly."”

A User's Manual (CDRL A012) was developed to provide guidance to users on the
use of the AMT.

3.5 [IMPLEMENTATION APPROACH

The implementation of the AMT was done in IFTRAN2, a General Research
Corporation structured programming preprocessor to FORTRAN. IFTRAN2 provided
a structured FORTRAN-based lanquage for developing the source code. As a

result, the code is well structured and easier to read. The implementation
was conducted incrementally over an 11 month period. The initial capability
developed was the Executive Services Subsystem. This subsystem processes the
user command language. By providing this function first, future users could
begin training and gain familiarity with the user interface. Also the
Preprocessing Subsystem was started early during the implementation phase.
The parser portion of this subsystem was an existing system. We had to
describe the COBOL grammar in a Backus-Naur-Form (BNF) 1ike language, however,
and because we could find no such description of COBOL we started this task
early to avoid unexpected difficulties.

3-16

;
.

L_A__._.-‘A —-—a a1

TN A

'
]
b
3

The next subsystem to be developed was the Data Management Services. This
allowed demonstration of the capability to manually enter and extract data
from the data base. The Utilities Subsystem was also developed at this time .

The Automated Measurement Subsystem and Report Generation Subsystem were then
completed to provide the full operational capability.

Documentation of the implementation of the AMT was provided in the Program
Specification (CDRL AO10), the Program Maintenance Manual (CORL A013), and the
source code provided.

Because of the inefficiencies of developing the software remotely on the RADC
H6180, the AMT subsystems were prototyped on a General Electric VAX 11/780.
To enhance the portability of these prototypes to the RADC H6180, specific
standards and conventions were developed and followed. These standards and
conventions are described in Appendix B. Final system integration and
modification was done remotely on the RADC H6180.

3.6 AMT TEST

A Test Plan (CDRL A015) was developed and submitted for review by RADC and
USACSC at the end of the design phase. This test plan incorporated a strategy
of testing each subsystem increment as it was developed, integrating them
stepwise 1into the development environment, performing system test,
transferring to the RADC target environment, and performing regression system
tests. The RADC testing was done remotely. The tests were based primarily on
demonstrating the functional capabilities of the AMT and its error handling
capabilities, using five COBOL programs provided by the USACSC. The results
of the tests were documented in a Test Analysis Document (CDRL AQ14)

3.7 AMT TRAINING

The last phase of the project was to develop a training outline, provide
training in the form of a demonstration at RADC, and deliver the tool and
documentation, including the analyses performed. The training material (CDRL
A006) was delivered also. The AMT User's Manual (CDRL A012) provides examples
from operating the AMT.

)

|

Aeddba dgc ot o0

PP

PO ST Ear

fom aueis v i a sl QIR aeE st geing i iat P A it

-r —————r - v -
P TN '
. i A Y . coe

A Shalaneras e

a2

Lan a2 -

SECTION 4
AMT DESCRIPTION

4,1 OVERVIEW

The AMT is a system to be used in support of the quality assurance function
during software development and maintenance. Four types of users are
envisioned for the system, a customer or user of a software system to be
developed, a quality assurance analyst, the software development project
manager, and a software researcher. The objective of the system is to provide

guality assurance information to these users in the form of software quality
metrics.

The system provides five major services to accomplish its function of
providing software quality metrics to its users.

Automatic Metric Collection
Manual Metric Collection
Storage and Retrieval
Report Generation

User Messages

In order to support these services, the subsystem design shown in the
functional block diagram in Figure 3.4.1-1 was developed. The major functions
are:

Executive Services (EXS)

Database Management Services (DMS)
Automatic Measurement Services (AMS)
Report Generation Services (RGS)

The relationship between the services provided by the AMT and the functional
areas is shown in Figure 4.1-1, The following paragraphs describe each of the
functional areas. Detailed hierarchy charts of each subsystem are contained
in the System/Subsystem Specification (CORL A009).

.
u.' <4

IR AN

o

W~ RN

FUNCTIONAL AREAS

User

3 Services EXS OMS AMS RGS
ts
g L
- Auto. Metric X X S
R Collection .
\ i
o Manual Metric X X E i"
S Collection s
;i »
; Storage and X X : !
[Retrieval ; 3

_ .
3 e j
3 Reports X X X]
;‘ ..‘
.
S User Messages X N
b-'.- .' 4
- o
g |
E' Figure 4.1-1 Services Provided By Functional Areas '
e ’
E. -
.

;f. ;
- ~]
4-2

o ‘
| PR it e —

S aasonas ~ an

bl At MR St g

TYTrTT M IR A 201
A

p—
: .

4.2 EXECUTIVE SERVICES

The function of the Executive Services (EXS) is to provide the interface
between the user and the AMT. Thus, EXS interprets the user commands and
performs all the necessary calls to other AMT functions to actually carry out
the actions indicated by the user with his command. The EXS monitors system
status and reports all errors trapped by itself or any other subsystem. Built
in debugging functions which allow a user/programmer to trace real-time
program execution are also controlled by the EXS. The EXS queries for
complete command information and also provides user 'help' information.

4,2.1 COMMAND LANGUAGE
The command language processed by EXS is as follows:

CR Carriage Return
Responds with prompt.

CREATE databasename
Creates a file for storing worksheet data. Uses system file
manipulation routines.

DELETE Modulename
This command deletes a module from the current database

E Exits the user from the current task.

END Terminates AMT session. Closes all open files prior to termination.

ENTER modulename
Used to identify new modules for which data is to be stored in
current data base.

GET worksheet number [sectionnumber] [itemnumber] [modulename]
Retrieves items currently stored in data base. Retrieval is based on
individual items, sections from a worksheet, or an entire worksheet.
For worksheets that are at module 1level, module name must be
specified.

4-3

@

_;""F tal T

T

HELP

MEASURE

PUT

REPORT

SET

(]

[commandname]
Provides text which explains syntax of each command and function.
Without command name, it provides list of available commands.

sourcefilename modulename

Causes automated source code metric collection to be initiated using
the source code in sourcefilenamefile. Data collected is stored in
appropriate worksheet for module name.

worksheetnumber [sectionnumber] [itemnumber] [modulename]

Allows storage of values in the database. The system prompts
operator for value or values by placing worksheet identifying phrase
or question on terminal. Prompts are for individual items, or for
each item within a whole worksheet. For worksheets that are
organized by module, the modulename must be entered or if it is not
entered, a prompt requesting it is displayed.

reportname [Printer]

Generates the report requested. The reports are presented at the
terminal. Certain reports require further input and the operator is
prompted for further input.

databasename

The data base for subsequent commands to interact with is identified
by this command. Only one database may be processed at any one
time. A SET command supercedes previous SET'S. The data base had to
have been created for the SET to work.

indicates optional data

4,2.2 GENERAL CONVENTIONS FOR ENTERING A COMMAND
When entering commands and keywords the user need only type the first three
characters of the command name, e.g., CRE for CREATE. the one exception to

the rule is the worksheet numbers, for which four characters are required
j.e., WS2A and WS2B for worksheet 2A or worksheet 2B.

4-4

-y
- .

P W DN RN . .

PR,

L5 A

.

e _,
Bl ol i,

o el .
PR se o

Aok A s

bl

I

P T . w7

The various parts of a command must be separated by one or more spaces i.e.,
CRE PROG1. For commands that have parameters the user may type Jjust the
command name followed by a carriage return. The AMT will prompt the user for
the necessasy parameters. For example, when CRE is entered AMT prompts with
ENTER DATABASE NAME: Each command or command part must be terminated with a
carriage return.

When entering responses to the Yes/No questions a "Y“ may be typed for "Yes",
and "N" may be typed for a "No". Not applicable responses must be indicated
by entering "NA".

4.3 DATA BASE MANAGEMENT SERVICES

The Database Management Services (DMS) provide for the storage and retrieval
of raw metric data. The ability to create, open, close, and expand AMT data
bases is also provided by this subsystem. While individual data base items
can be referenced, the data structure used most often by DMS is the
worksheet. This implementation provides rapid and efficient access to the
data base entries and their values. System dependent functions such as file
hand1ling and disk access are isolated in the Utilities Subsystem (UTL).

4.3.1 DATABASE DESIGN
The worksheet oriented organization of the metrics. The worksheets are

defined in the Software Measurement Manual [MCCJ19]. Samples are in Appendix
A.

The logical structure of the data base is described in Figure 4.3-1. A
separate data base is maintained for each system entered by a user or users of
the AMT. Logical records correspond to worksheets, with two distinguished
worksheets (1 and 2a) for which only one copy each exits. This is because
these worksheets are system level and refer to all modules. Multiple copies
of worksheets 2b and 3 are provided since these correspond to module level
metrics. Reference is made by worksheet number, section number and item
number and, in the case of worksheets 2b and 3, by module name.

4-5

A el sastaddboh A

e y WN L

)

A s

g Individual worksheet data items occur as elements of an array associated with
' each worksheet/logical record. Logical records are linked by number to a
& particular module name, the module names are kept in a list which is physically
L(stored at the beginning of the data base file. The prototype version of the
AMT has a limitation per data base of 50 modules. The system organization of
the data base using the GCOS file management system is shown in Figure 4.3-2.

h! The logical record number of a particular module's worksheet is thus calculated
by finding the corresponding entry number of the module in the module name list
| and adding an offset number (which is implementation dependent). Particular
p data items can then be obtained by using the array index associated with the
1' item. Array indices for a particular data item in a worksheet are stored in a
a pointer table which is indexed by the triple (worksheet number, section number,
{ item number). This table is pre-defined and is stored as a DATA statement (see
Figure 4.3-3). A more complete description of the data base implementation is
C in the AMT Data Base Description document (CDRL AO11).

Raw metric data is stored in the data base in two ways. First, it can be
- stored manually by the user. The user can enter module names using the ENTER
FE command. This command enters the module name in the data base and reserves a
designated area for storing worksheets 2b and 3's data for that module. The
user can also enter metric raw data from one of the worksheets by using the PUT
; command. The PUT command can be used to prompt the user for one of the data
E! items in a section or a worksheet or it can be used to enter one specific value
. individually.

These metric values are calculated each time a user tries to generate reports.

;? This recalculation of the metric values is performed to insure current values.
g, The slight processing overhead is considered worth the L.nefit of currency.
Eﬁ The metric values calculated are :tored in local arrays. The system level
3 metrics are in single dimension arrays while the module level metrics are in
t? two dimension arrays. This physical and logical structure allows for the

processing flow within AMT to be as shown in Figure 4.3-4. The reason raw
metric data is maintained instead of just the calculated metric values is to
L allow researchers to change the calculations of metrics to investigate other
f' algorithms.

4-6

D A . el

o

TV

YT YW T T, YT T

DATA MANAGEZMENT SERVICES (DMS)

LOGICAL DESCRIPTION OF DATABASE

DATA REFERENCE

DATA REFERENCE

MODULE NAME LIST

ENTRY NC.

ENTRY NO.

‘ “AKST NO. | SEC. NO, | ITEM NOS &
™ WKST NO. | SEC. NO. | ITEM NO. &

-

WORKSHEET 1

WORKSHEET 2a

FIXED WORKSHEET
AREA

WORKSHEET 2b

.// MULTIPLE COPY

AREA INDEXED
8Y ENTRY NAME
AND NUMBER

AQRKSHEET 3

[]
L]
[]
[
¢ 1083
Figure 4.3-1 Logical Description of AT Data Base
4.7

1
e amn e

«e 2

T-.'"‘v"'".—"—v,vv'-’-'—“—'v‘—'"'ﬁv‘v-ﬁvv_-v LI e i i D »T”»" C L . L} < L Ll ﬁv"_"_‘_“‘_—f‘ﬂ_" ""'—_"-—‘T—-‘
]]
g .
g PHYSICAL ORGANIZATION OF DATABASE .
.]
(! MODULE NAME &
3 LIST
FIXED LENGTH z
, ¢ RECORDS T
b AR
E ‘.‘ 4
; WORKSHEET 1 A |
{]
. L
| .
FIXED WORKSHEET .
; WORKSHEET 2a
{]
3 »
=
-
% WORKSHEET 2b A .
(| MODULE 1 °
1 -
[~
"!:]
WORKSHEET 3 v
.. MODULE 1 VARIABLE COPY .
E AREA INDEXED :
§ BY MODULE i
- ENTRY :
g
g WORKSHEET 2b .
3 MODULE 2 i_;,
. +
ko) |
- - 1
5 Y ‘
[]
[]
. ® .
: . 1079]
b < .
) . '
1 -
3 Figure 4.3-2 Physical Organization of Data 3ase -
t 4-8
i
1
W o . - — e e e

— B R e R A SN A AR]
,ﬁ ® f d P - * o ® > .
Lot dlqe] 433uL0d ¢-g ¢ d4nby 4
X3ONI Avidy = (uL “us °“sm) 31gvi

, SYIGWON
[-t NO1123S >

d
1 \\ SYIGMNN
. j\ 1331SHYOM
. d
. L]

1 o

1 |1 -

L

P Y
5 L
{ \ -
. . IBWON W3LE
3 \ \
{ 319v1 YIINIOJ YO1VISNVYHL
4
.:.‘_. :..... ...‘ ,..A..,......,.‘.... I!. ...r.,..»f.t. ..y‘bb’..lh..i Ced e

PV TR RO RO

i".w. — ~ ~r an o Ty —y Pas M 2 2n A 22 x4 4 4 ————" o 4,. -..-.-.-! T v M, .~4.1 T T = e
. : N ‘ . . L et - - _
° ° 2 » LR - - -
[} .
' L
” bupssadoay (WY p-€°p aunbyy]
o
4
NOLLONNY P—
< NOI 1VZ | TVIviON sanpom ¥ 10) u 1
| |-
. Aeaae dwy (3A3] 3|npom £
{ " SISVIl 4IAO HINOYD (] LIMSHHON
a SMIIVA J14L I |~ , 1 vih Aease dwy [ana| wa)shs
: e
P IMWA 1,
ETE] X 1
NI10330x3
S JIN00N 1 47013 , w
—uo_:e.i u J0) _HA € WLl 13RS 0N
2 WILL ¥ L W3LI
Aeade ubysap-p
(aNvWMOD IHOSY I DHESN)
N (swv) ATVD1IWHOINY (2) A
V4 {ONVIHG) HIINT O
{ ot DVI | so1m1m 2 ONVWHO) 104 ONTSTY)
[<= 13HSNUON HISn An ATV (1) ©
Aease ubjsap-d 4.
N
M\ SINVA | '
_ IN TN
NISHHOM
g * | SWHON (J& n vivi
3 H IRE LS} Aeaue syuawalinbaa W NNEW
} 0 NS 4
l\n!
R r
SIHVN
SISV Y ot |€——— 110w VI H
f sve
_ viva 4
. W1ISAS O
s E
| w
) d
. A
a 4
ﬁ . d
B . .
] o
Y PR . e . P PR . - .. - - : A.
S ~ i W ARSI . SRS) VT NI e Lo

Ml aat o Amnt Jag Shb dehegen A oo

4.3.2 FILE SPECIFICATION CONVENTIONS
To utilize a data base of metric information within the AMT, the CREATE and
SET commands are used. When using these commands the user is interfacing with
the AMT data base. The AMT takes the character string the user enters as part
of the CREATE of SET command and appends .DAT to it. For example:

CRE TEST
creates a data base file called TEST.DAT. At other times, the user may want
to interface with a file other than an AMT data base. An example is the
MEASURE command. In this situation the AMT accesses a file which has source
code that is to be analyzed by the AMT parser and Automated Measurement
Subsystem. That file was established using the system editor and file
management system. In this case, the user must specify the full filename of
the file containing the source code.
For example:

MEASURE PROG1.CBL MOD1
accesses a file called PROGI.CBL which contains the COBOL source code for
MOD1. The user should be aware of the file specification/naming conventions
and file maintenance procedures of the computer they are using to run AMT in
order to name and maintain the AMT files.

4.4 AUTOMATED MEASUREMENT SERVICES

The amount of data that can be automatically collected is limited to data that
can be derived from machine readable sources such as design materials
generated on the computer and the actual source code. This paragraph
describes the current automatic data collection capability of the AMT.

The current version of the AMT automatically collects and stores raw data from
COBOL source code. The remainder of the raw data reguired to calculate the
metrics must be manually collected.

4,4.1 AUTOMATED MEASUREMENT OF SOURCE CODE

Currently the AMT collects data from COBOL source code for individual
modules. A total of 25 different measurements are collected automatically.
These measurements can be divided into the following broad classes:

4-11

1. Counts of total number of code statements and comment statements;

2. Counts for individual types of statements e.q., input, output, exit,
entry, declarative, etc,;

3. Counts of different types of branching statements both conditional
and unconditional; and

4, Counts of operands and operators, for use in calculating Halstead's
measure.

The specific data items automatically collected are shown in Table 4.4.1-1.
Also noted in the table is the entry on the worksheet that this item relates
to and the metric that it helps calculate. The worksheet entry is identified
by worksheet number (WS3), section number (SI), and item number (I1). Thus a
notation such as WS3, SI, I1 is read as worksheet 3, section I, item 1.

This automated support accounts for 25 of the 92 worksheet 3 data items, or
27% of the measurements required at the implementation phase of a
development. These 25 data items help calculate 9 of the 38 metrics related
to implementation, or 24% of those metrics. The metric calculation is
described in paragraph 4.5, Report Generation.

The automated data collection is performed by the Automated Measurement
Services (AMS) and the Preprocessing Services (PPS) subsystems. The user
invokes these subsystems using the MEASURE command. The Preprocessing
Services uses an LL(1) generalized parser to decompose the COBOL source code
contained in the file identified by the MEASURE command. The result of the
parsing is a parse tree representation of the source code. A description of
the parser, which uses a Backus-Naur-Form description of COBOL grammar, is in
the AMT System/Subsystem Specification document (CDRL A009).

The Automated Measurement Services subsystem traverses the parse tree and
counts the various data items and enters them in the data base. More detailed
descriptions of the design of these subsystems are in the Design Plan, CDRL
A001.

Aodat aal

;ifa

e
. .
hooel ot o o0

Fyen

antmath,

T W W~ W W~ w - ow ==

\d

b

e

DAL/ AL AL AN ; — Y Y VIOV e e
Aou3131343 3ALIND3XI €°33 2I°ITIAS‘ESM P3JR(J9P UIYM PAZI|RLIfUL SIQRIURA JO JIQWAN G2
Aou31d1 443 aAIndax3 €°33 LIITIAS ESH SUOESSaUdXd IpOw PIXIW JO JIQUAN “H2
uotjejuawa | dw] 4B\ NPON 2°ONW LICAS“ESH S3|Npow 03 S| (D JO JIQWNN °€2
3Juapuadapu] auiyoey | “IW ZIAIS ESM sjuawaels IndIno o JIqunN °27
35uapuddapu] duiyoen |°IW LI*AIS ESM sjuaulIe}s Indul JO s3qEnN (2
SSauaAL1di1aos3q abenbuey £°aGS ELIITIS SSM S3Ul| UOLIENULIUOD JO JIGENN °02
sjuduwo) 4o Aytjuend 1°0S (I°TTISESM SIUUN0D JO IQWAN "6
$S3udsIduo) | °0) pITIS ESM spuesado anbiun jo saquN "8y
SS3uUasSLIV0) 170D EI‘TIS*ESM s401ea3do anbiun jJo sAquNN /|
$S3Uas|ou0) | 0) 2I°TISESM spuesado jo JaqunN 9| .
$S3uasiIN0) 1°0) LI*TIS*ESM sa0jesado JO J3quUNN °G|
A31211dunyg 6Upo) ¢°IS LLICIS ESH sjuauels Supkjipow d npow Jo L3quNN “p|
A319¢dws butpo)d ¥°IS PLICIS ESM sdooy j0 JaqumN "¢y
K310y | duy g 6ulpo) p°IS ELIIS ESM S3YdURLQ |PUOLILPUOIUN JO JAQUNN °2| =
A31o41dwis Burpod p°IS ZLICIS*ESM SaYsueaq |PUOLILPUOD JO JAQUNN °|| M ;
A31x31dwo) £° 1S LIS ESA sjutod uogsLIIpgns 4O JIquNN "0 3
A31xa|dwo) €°1S OLI*IS*ESM S3UL0d UOLS|DAp JO J3QENN 6 :
£3101 1 dwis Butpo) v IS 61°IS“ESM taA9)] Burysou wnwyxen °g
34n3ona3s ubisag 1°1S BI*IS*ESM S| NPOW WOXJ SILXD JO JIqUNN °/
2an3ona3g ubisag L IS LICIS‘ESM S| Npow 0} SIJURAIUD JO JIQUNN °9
£3101 1 dun§ Butpo) 1S 91°1S ESM S|2qe| JU3ILIS JO JBqWNN G
£31o110unsg 6uypo) b 1S GI‘IS‘ESM sjuduRlels voLjendiuew ejep 4O J3qUNN “p
Anondws buipod p°1$ P11S ESM SIUARILYS JALIRIRIAP JO JIQEWNN °E
£31o1duwtg Buipod p° IS 2I°IS'ESM SIuUawWdIP}S JUSUMOD SNULW IPOD JO SAUL| JO JIquNN -2 :
uoLIRvJuswR) dw] Je) NpoW 2°NW 11°IS ESA 3p02 JO S3uUL| jO JIGMNN | ,
L") £au3 wal] eieQ
13YSHIOM
ee(J1J433W pajewolny [-|°p°b 3d(qel
) . oB T , . L

v - vy o=

TV r"‘."—,'i't

o rmf.w T

A I AP an e ang

The significant aspect of this approach is that other language grammers can be
described to the parser, a scanner developed, and the parser will produce a
parse tree representation of the other language. With careful attention paid
to the token representation, the AMS will be able to process this parse tree
representation of the other language with little or no modification.

4,4,2 AUTOMATED AID TO MANUAL MEASUREMENT OF METRICS

Paragraph 4.4.1 described the 25 measurements that are automatically collected
by the AMT. There are 31 measurements during requirements, 173 during design,
and 67 during implementation that are not currently automatically collected.
The AMT does provide some automated support to their collection and storage in
a data base.

The AMT will automatically generate worksheet forms which must be filled out
by an analyst/inspector. These worksheets can be printed with any current
data that exists in the data base displayed. This is particularly useful for
worksheet 3 which will be partially completed automatically by the AMT when
the MEASURE command is used.

The AMT also provides the PUT command that facilitates the user entering data
into the data base. The PUT command is described in paragraph 4.3 and in the
AMT Users Manual (CDRL A012).

The standard procedure for using the AMT to assist in manual collection of
metric data is as follows:

(1) The appropriate worksheet will be printed at the terminal. This
worksheet will be the data collection form for the inspector's use.

(2) Reference should be made to the Metrics Enhancement Final Report
[MCCJI79Vo11], Software Quality Measurement Manual [MCCJ79VolII], and
the AMT User's Manual [CDRL A012]. These references provide a
description of the metrics, the worksheets, and how they can be used
in context of the AMT respectively. The AMT User's Manual provides a
copy of each worksheet (Appendix C), instructions for completing the
worksheets (Appendix D), and an example of the worksheets completed
for a COBOL source program.

[NN

-rvy

T

(3) The appropriate source material should be gathered. For example, the
Requirements Specification is the source material for worksheet 1.

(4) The source material should be briefly read for both format and
content.

(5) A detailed analysis of the source material should then be conducted
using the questions on the worksheet as directed inspection of the
source material.

(6) Once all questions are answered, then the inspector should document
any overall observations that might be made based on the inspection.

(7) The answers to the worksheet questions should then be entered into
the AMT data base using the PUT command

This standard procedure will become routine with application experience. This
is especially true if the experience is gained in an environment where the
documents prepared follow a consistent format or are prepared according to the
same military standard. In these cases, the information sought as a result
of the worksheet questions typically will be in a certain section of the
document.

This general approach provides the inspector a framework in which to inspect
material, specific questions to answer, and a directed sequence to follow.
This consistency and quantification in the inspection process enhances the
consistency between inspectors and makes the process more repeatable and
consistent between applications. These benefits provide better inspection
resuits, more feedback to the developers and management, and therefore aid in
achieving a higher quality software product.

4.4,3 USE OF OTHER AUTOMATED TOOLS

The AMT was developed with the concept of eventually interfacing it to other
software tools in a software development environment. The interfacing would
be done by extracting metric data available from the processing done by the
other tools and inserting the data into the AMT data base so metrics could be
calculated.

A program would have to be written which extracts the appropriate data from
the output file of a tool and using the AMT PUT command, inserts it into the
data base. Potential tools that should be considered are Requirements

4-15

® "

e BSa s -l

PR R
o A At 4l sk e ateal

;
v
L»
b
L
%
-
L
"

L e . A A Y S A N A o T A e A e S S A S S S A

Specification Language processors/analyzers, Program Design Language
Processors/analyzers, code auditors, code instrumentors, and configuration
management tools.

4.5 REPORT GENERATION SERVICES

The Report Generation Services (RGS) provides the user the ability to generate
various reports that reflect the contents of a database. Nine reports may be
requested by the user to display the metric data in a variety of formats, and
by performing additional calculations, present various forms of data both at
the module and system levels. The processing that is done is shown in Figure
4.3-4. Basically, data is extracted from the data base to calculate metric

values. The algorithms for performing these calculations are contained in the
Report Generation Services routines. These algorithms are defined in the
Metrics Enhancement Final Report [MCCJ79] and in the Program Specification
Document (CDRL AO10). Samples of these reports are included in the Users
Manual and in Appendix A. Brief descriptions follow:

4,5.1 MODULE REPORT
This report displays the catalog of modules that have been entered into the
database. It provides a status report on the database.

4.5.2 METRIC REPORT

This report calculates the value of each metric catagorized by factor and by
development phase. This report is used to determine a total picture of the
project as measurements are taken.

4.5.3 EXCEPTION REPORT

The exception report delivers the relationship of each module to a given
threshold value of a particular metric. The relationship (less than, equal
to, or greater than) and the threshold value is input from the user. This
report can be used to identify modules whose scores do not meet a certain
threshold, identifying them as potential problems.

PPV T NP WRIOUR VO

P U U RO S R T SNV SR S S 1

[PUEPErEY

T T T T

T

TrYrwTTTY

4.5.4 QUALITY GROWTH REPORT

When the user wishes to track the value of a particular metric over time, the
Quality Growth Report will furnish a tabular display of the scores of a
selected metric over the phases of the project. This report is used to track
a particular metric through a project to see how its value changes.

4,.5.5 NORMALIZATION REPORT

The Normalization Report provides the user with the overall rating of a
selected quality factor. A series of regression equations are displayed which
have been empirically derived from research. The current metric values are
substituted in the equations and a rating for the selected quality factor is
calculated. Regression equations exist for the quality factors Reliability,
Maintainability, Portability, and Flexibility only. The normalization
function is calculated at a module level.

4,5.6 STATISTICS REPORT
The Statistics Report provides a profile of COBOL constructs for each module.

4.5.7 SUMMARY REPORT
The summary report provides a summary of the metric scores for all of the
modules in the system.

4.5.8 WORKSHEET REPORT

The worksheet report displays the raw data entered in each worksheet. It
represents the current values in the database. It is used to verify and track
data entry.

4.5.9 MATRIX REPORT

This report displays the average and standard deviations for all metrics
values for all modules. This report displays all of this information in a
matrix form allowing the user to easily identify modules with metric scores
that vary from the system average.

4-17

T
R

—ar —4
®

.
PRI WY

»'«

.. et utniinan i, .

. T".'".r"" ot

—var

A A oL

4.5.10 REPORT SUMMARY
The reports may be classified as to their primary use:

o Descriptive
e Historical
e Diagnostic

The reports that are descriptive are the Summary, Matrix, Module, and Metric
reports. Their common characteristic is that they report data in a format
implying no judgements concerning the data. The Summary Report reports all
metric scores for each module or for all the modules. The Matrix Report
displays the mean and standard deviation of the modules for each metric. It
is a good snapshot of the data in the data base. The Module Report is meant
for operational personnel. It reports those names of the modules which are in
the data base. The Metric Report is a more detailed output which displays the
metric values for each module in a detailed form.

The Historical Reports are the Quality Growth and Worksheet Reports. The
Quality Growth report provides the quality trend of a module through the
development phases. The Worksheet Report gives a very detailed display of the
raw data before it is transformed into metric scores. It's main use is to
track data entry and updates.

The Diagnostic Reports are those that identify potential problem areas. They
are the Normalization, Exception, and Statistics Reports. The Normalization
Report applies the regression equations derived from research to metric values
related to the quality factors of flexibility, maintainability, portability,
and reliability at the module level. These regression equations have been
developed through examination of previous projects.

Regression equations for the remaining quality factors have not been
established. The Exception Report provides a comparison of the metric scores
with predetermined, user supplied values. The Statistics Report gives a
diagnostic snapshot of any module. These data may be used to evaluate
standards or identify potential problem areas.

2

i LA Al ad be

The typical use of these reports is described in Table 3.3-3. The table
identifies what type of support each report offers different job functions.

Additional reports can be added with relatively minor effort. Reference to
the report would have to be added into the Executive Services processing and a
report routine written using the GET command to extract appropriate data from
the data base. Reference should be made to the AMT Maintenance Manual (CDRL
R013) and the AMT Program Specification document (CDRL A010) for further
insight into the modifications necessary to write a new report.

4-19

-

OO

——

St > |

PP

SECTION 5
RESULTS OF QUALITY METRIC EXPERIMENT

5.1 INTRODUCTION

The software quality metrics concepts were applied during the development of
the Automated Measurement Tool. This is the first formal application of the
software metrics defined in [MCCJ77A] and therefore viewed as an experimental

demonstration of the metric concepts. The purposes of this application of the
metrics were:

(1) Provide additional experience with applying the metrics and
validating their utility. An added benefit of this experience is
that the application of the metrics was in-line with the development
effort and not after the fact as past applications have been.

(2) Provide quality assurance feedback to the development team and the
RADC project engineer. The application of the metrics was planned as
a complement to the planned testing to insure production of an
effective software product.

(3) Meet the quality requirements identified in the statement of work.
Some specific qualities were identified as being important to the AMT
development and the metrics were applied to provide some assurance
that emphasis was placed on their inclusion.

(4) Provide an experimental basis for generating suggestions on how to
best use the metrics in a contractual environment.

This section describes the approach to performing this experimental
application of the concepts, the results achieved, and lessons learned.

This section has the following organization. Paragraph 5.2 describes the
quality goals identified for the contract. Paragraph 5.3 describes the
process followed in applying the worksheetc during the development.

Paragraph 5.4 describes the results of the application of the metrics in terms
of scores achieved, observations made based on the scores, assessment of the
metrics, calculations of the normalization functions, and comparison of the
scores with the goals established. Paragraph 5.5 compares the metric values
achieved during the AMT development with those observed in past experiences.
Paragraph 5.6 summarizes the lessons learned from the experiment.

5-1

o]

N 2

--'-' L

[[[[

1

5.2 QUALITY GOALS FOR THE AMT DEVELOPMENT

5.2.1 STATEMENT OF WORK RELATED QUALITY GOALS
A high level statement of the quality goals of the AMT development was
mentioned in paragraph 4.1.1.3 of the statement of work.

The quality factors portability, flexibility, and interoperability were
jdentified as important to the AMT product. Portability was important because
the system design must consider four different target environments:
H6000/GCOS, H6000MULTICS, PDP 11/70 UNIX, and IBM 370/0S.

Flexibility was important because a subset of the entire set of metrics will
initially be automatically collected. The system may be extended in the
future to collect a larger subset. Interoperability was important because a
number of new or existing software tools may be interfaced with the system.

5.2.2 SPECIFIC QUALITY GOALS ESTABLISHED

To establish more specific goals against which to measure the development
effort, the Software Quality Requirements Survey Form, shown in Table 5.2.2-1,
was completed by a representation of RADC, USACSC/AIRMICS, and the development
team. A form of the Delphi technique was used in that each individual
completed the form and then in a group session agreed to a priorized list of
the gquality factors important to the AMT development. The quality goals
decided upon are identified in Table 5.2.2-2.

The first six factors: Portability, Flexibility, Reusability,
Interoperability, Correctness, and Maintainability were especially emphasized
in the experiment since they were ranked highest.

Additionally, specific ratings for four factors and for several metrics were
established. The ratings, shown in Table 5.2.2-3, were established based on
previous experience and are set at the specific levels indicated as part of
the experiment. The previous experience refers to the validation efforts
conducted under preciously funded research efforts. The Software Quality
Measurement Manual [MCCJ79] provides additional guidance on certain metrics
and normalization function thresholds.

5-2

T

w

S WA

Table 5.2.2-1 Software Quality Requirements Survey Form

1. The 11 quality factors listed below have been isolated from the cur-
rent literature. They are not meant to be exhaustive, but to reflect
what is currently thought to be important. Please indicate whether
‘you consider each factor to be Very Important (VI), Important (I),
Somewhat Important (SI), or Not Important (NI) as design goals in the
system you are currently working on.

RESPONSE FACTORS DEFINITION
CORRECTNESS Extent to which a program satisfies its

specifications and fulfills the user's
mission objectives.

RELIABILITY Extent to which a program can be expected
to perform its intended function with

oy ‘yequ'l red precision.

EFFICIENCY The amount of computing resources and code
required by a program to perform a function.

INTEGRITY Extent to which access to software or data
by unauthorized persons can be controlled.

USABILITY Effort required to learn, operate, prepare
input, and interpret output of a program.

MAINTAINABILITY Effort required to locate and fix an error
in an operational program.

TZSTABILITY Effort required to test 2 program to insure
it performs its intended function.

FLEXIBILITY Effort required to modify an operational
program,

PORTABILITY Effort required to transfer a program from

one hardware configuration and/or software
system environment to another.

REUSABILITY Extent to which a program can be used in other
applications - related to the packaging and
scope of the functions that programs perform.

INTEROPERABILITY gEffort required to couple one system with
another.

2. What type(s) of application are you currently involved in?

3. Are you currently in:

1. Development phase
2. Operations/Maintenance phase

4. Please indicate the title which most closely describes your position:

1. Program Manager

2. Technical Consultant
3

4

. Systems Analyst
. Other (please specify)

12

5-3

o

o

4 .’5‘ PR SN VY VY sy

—— kb

Table 5.2.2-2 Quality Requirements for AMT (In Order of Ranking)

FACTOR
PORTABILITY
FLEXIBILITY
REUSABILITY

INTEROPERABILITY
CORRECTNESS
MAINTAINABILITY
RELIABILITY

USABILITY
TESTABILITY

INTEGRITY

EFFICIENCY

(vI)
(VI)
(V1)

(1)

(1)

(1)

(s1)

(SI)
(SI)

(NI)

(NI)

CONSIDERATION
Targeted for IBM 370, H6000, PDP 11/70.

Tools to be added and capabilities enhance.

In transporting to other environments and
Iangua?es, want to reuse as much software as
possible.

Software tools to be interfaced with.

Utility of AMT depends on its functioning
correctly.

May eventually be maintained by personnel
other than developers.

Accuracy of metric counts and quality rating
calculations important.

To be used by managers and QA analysts.

The correctness of the metric data collection
must be demonstrated.

The security of the data base is not really
critical.

Processing efficiency not critical.

Where VI is Very Important

is Important

SI is Somewhat Important
NI is not important

5-4

.

PO RIEP I G

[et 2

A~ SEARAENE" IR

Ma At g aae SRR L4

s T = T T oy T yT Ny

Table 5.2.2-3 Specific Quality Goals

FACTOR RATINGS AMT c?
Flexibility .7 .4
Portability .75 NM
Maintainability o7 .33
Reliability .9 .98

METRIC THRESHOLD VALUES

MO0.2
GE.?2
SD.1
SD.2
SD.3
MI.
Cs.1
SI.1
S1.3
SI.4
€0.1

Modular Implementation Measure
Generality Checklist

Quantity of Comments
Effectiveness of Comments
Descriptiveness of Implementation Language
Machine Independence Measure
Procedure Consistency Checklist
Design Structure Measure
Complexity Measure

Code Simplicity Measure
Conciseness Measure

NM - Not Measured

5-5

-i‘]

M Bt St ann ann r

.mv

v

reveyvey

~— T

Ta

The values selected for Flexibility (.7) and Portability (.75) are above
industry average since they were identified as very important for the AMT.
The value for Maintainability (.7) was selected at what is considered the
industry average because it was identified as important. The value for
Reliability (.9) was identified as below the industry average since it was
jdentified as only somewhat important to the AMT. The values we experienced
on previous studies are also indica.ed in Table 5.2.2-3. These values were
measured in a Command and Control (CZ) environment and a Management
Information System (MIS) environment. Because of the nature of the C2
application and the fact that the MIS system was a production system, the
values for Reliability were higher for those systems than for the AMT,

The Metric values identified likewise were drawn from previous experience and
depending on whether the quality factor they related to was considered
important or not to the AMT, their values were set. The AMT scores as well as
a discussion of the threshold values set and how they compare to previous
experience is in paragraph 5.5.

5.2.3 APPLICATION METHODOLOGY

The procedures we used to apply the measurements to the AMT development are
essentially those described in the Software Quality Measurement Manual
[MCCJ78]. Those applied are briefly highlighted here:

(1) Established Quality Goals (see paragraph 5.2.2)

(2) Applied Worksheet 1 to the informal Requirements Specifications that
were generated at the outset of the project.

(3) Applied Worksheet 2a to the Design Document at the system level.

(4) Applied Worksheet 2b to the Design Document at the module level.
This application was made at the beginning of the implementation of
each increment because it was at that point that the detailed designs
of the modules in that increment were set.

—Leana . A e aa

ans_ ales

dad

PV

(5) Applied Worksheet 3 to the code.
(6) Metric scores were calculated from the worksheets.

(7) Observations or analyses based on the worksheet data and the metric
scores were documented (see paragraph 5.4).

(8) Where normalization functions existed, they were calculated.

(9) The worksheet data, metric scores, documented observations and
quality ratings (calculated normalization function) are presented in
this report.

(10) Where possible, automated tools were utilized to apply the metrics.
Tools considered for use are identified in Appendix D.

5.2.4 DESIGN AND IMPLEMENTATION GUIDELINES

Based on the identification of certain quality factors as goals for the
development, some specific practices were identified for the development team
to follow. These guidelines are identified in Appendix B. These guidelines
were derived from experiences in transferring PDP FORTRAN code to H6000
FORTRAN code, and from transferring code from the H6000 to an IBM 370.

5.3 APPLICATION OF WORKSHEETS

The worksheets that are part of the Software Quality Measurement Manual
[MCCJ79] were the major vehicle for applying the measurements during the AMT
development. Figure 3.3-1 illustrates the timing of their application. Note
that worksheet 1 was applied to the draft Reauirements Specification that was
written in December 1979. That specification was not a formal deliverable of
the contract. Worksheet 2a was applied to the Design Plan (CDRL AOO1).

Worksheet 2b was applied to the HIPO diagrams and Program Design Language
description of each module in the Design Plan. The worksheets were applied at
the initial phases of each subsystem as it was being developed. This timing
was chosen because at that time the PDL's and data definitions were refined
and were the driving documents of the implementation. It was at that time
that identifying quality problems had the most positive impact.

5-7

L
. P . B - 3 oma a 2

Ateddhentind

R adaasa

Worksheet 3 was applied at the latter stages of each incremental development
phase, when the source code was complete. Had an automated tool been
available the measurements would have been taken several times during the
implementation.

Worksheet 1 and 2a, as completed, are in Figures A-1 and A-2 and an example
worksheet 2b and 3 are in Figure A-3 and A-4 in Appendix A. These latter two
worksheets were completed at a module-level.

5.4 RESULTS

The results of the application of the worksheets were reported to RADC at two
times during the project. The first time was during a review of the Design
Plan at RADC. The second time was at the completion of the delivery of the
AMT. The results were used by the development team thrughout the development
effort to assess the gquality of their design and implementation.

The results of the application of the worksheets were analyzed at three
levels. First, some general observations were made based on the application
of the worksheets. Second, the metric scores were calculated and reported.
Third, the metric scores were compared with the quality goals for the project.

5.4.1 REQUIREMENTS AND DESIGN

5.4.1.1 General Observations At Requirements And Preliminary Design

Table 5.4.1.1-1 contains the general observations made based on the
application of Worksheets 1 and 2a. These were applied to the draft
requirements document prepared in the first month of the the contract and the
design document, which was the product of the first phase of the contract and
represents a system-level view. These worksheets and observations were made
during the design phase of the contract and reported to the RADC and
USACSC/AIRMICS project engineers at the design review.

The worksheet applications revealed that requirements dealing with such
attributes as security, error tolerance, performance, and interfacing with
other systems, had not been specified. Since security and performance were

Table 5.4.1.1-1 Observations Based on Worksheet Inspection of Requirements

Specification and Preliminary Design Specification during
Design Phase of the Project

REQUIREMENTS (Worksheet 1)

PLOU e # SeatnnAL

Pal A S

No flow of processing and decisions during that flow described
Operations concept did not really describe scenario of use

No reliability requirements specified; error tolerance, error recovery
No access controls required

No discussion of user interface except for command 1anguage

No performance requirements stated

Provisions for interfacing with other systems lacking

PRELIMINARY DESIGN SPEC (Worksheet 2a)

No error reporting/control system in erfect

Error conditions not identified yet

No called/call matrix for modules yet

No estimates on run times or storage requirements yet
No access controls provided

Other tools to interface with have not been identified
User Manual not written yet (outline has been)

No Test Plan yet

5-9

N SO

Lot ate an 2t o S 4

T
- .

vy

v

—r ‘v‘ﬁvw_v

v.v-r.wrw-v o add

not major quality goals these were not considered for correction. Since
Interoperability was important to the AMT, corrective action in the form of an
analysis of how the AMT would interface with other tools was conducted. The
results of the analysis were built into the design of the Data Management
Subsystem,

The worksheet application to the preliminary design material revealed that a
call/called matrix had not been generated at the subsystem level and that
error handling in the system had not been described. Both of these
deficiencies were corrected by the time the Design Plan (CDRL AO001) was
delivered. An update to worksheet 2a at detailed design was not done but one
was done at the end of the contract. This update included the metrics related
to the Test Plan and User's Manual. A1l worksheets have been delivered to
RADC as part of the AMT data base and as a separate document.

5.4.1.2 Metric Scores

Table 5.4.1.2-1 contains the system metric scores calculated from the
application of Worksheet 1 and 2a. Paragraph 5.4.1.3 contains an analysis of
these scores. Only those metrics identified in paragraph 5.2 were measured.

5.4.1.3 Comparison with Quality Goals
The factors identified as very important and important were:

PORTABILITY:
The only indicator of portability at preliminary design time is the
Modular Implementation measure (score of .57) which is average based on
past experience. Measures of the machine independence and system
independence are not made until detailed design. At the end of the
preliminary design phase of the project the design was still machine and
operating system independent.

FLEXIBILITY:
The Modular Implementation measure (.57) and the Generality of the
design approach (.43) effect the flexibility of the code. These scores
represent a slightly better than average score for flexibility according
to past systems we had measured. While these are system level metrics

5-10

@

Al

Table 5.4.1.2-1 Metric Scores from Initial Application

of Worksheet 1 and 2a

REQUIRMENTS PHASE

Completeness (CP.1)

Accuracy (AY.1)

Error Tolerance-Input Data (ET.2)
Error Tolerance-Computational Failures (ET.3)
Error Tolerance-Hardware Faults (ET.4)
Error Tolerance-Device Errors (ET.5
Access Control (AC.1)

Access Audit (AA.1)

Operability (OP.1)

User Input Interface (CM.1)

User Output Interface (CM.2)
Communications Commonality (CC.1)

Data Commonality (DC.1)

PREL IMINARY DESIGN

Traceability 2TR.1
Completeness (CP.1

Accuracy (AY.1)

Error Tolerance-Control (ET,1)

Error Tolerance-Hardware Faults (ET.4)
Error Tolerance-Device Errors (ET.5
Design Structure (SI.1)

Modular Implementation (M0.2)
Generality (GE.1)

Module Testing (IN.1)

Integration Testing (IN.2)

System Testing (IN.3)

Iterative Processing Efficiency (EE.2)
Data Usage Efficiency (EE.3)

Storage Efficiency (SE.1)

Access Control (AC.1)

Access Audit (AA.1)

Operability (0P.1)

Training (TN.1)

User Input Interface (CM.1)

User Output Interface (CM.2)
Communcation Commonality (CC.1)

Data Commonality (DC.1)

.
o]

[=3)
et~ 2 OONOODODOO OO

OO0

.33
.57
.43

Test Plan not
completed yet

O—0O O

User manual
not written
yet
.5
1

AAAAAA

if we substitute them into normalization eqguations we get a rating of
approximately .25 or 4 man-days to make a modification to the system. This is
better than the specified goal of 6 man-days to make a modification (rating =
7).
REUSABILITY:
At the preliminary design phase of the development the indicators
available for reusability were the same as for flexibility.
INTEROPERABILITY:
The measures related to Interoperability are the Communication
Commonality measure (score of 1) and Data Commonality measure (score of
1) during requirements and the same two (score of .5 and 1
respectively) plus Modular Implementation (.57) during preliminary
design. The scores are high in this case because we had recognized the
requirements to build a system with which it will be easy to
interface. The primary interface will be with the data base. To
interface a tool with AMT, one must write a translation or interface
routine which takes tha output of the tool and transforms it into the
format of the AMT data base. The AMT data management routines would be
available to facilitate that process.
CORRECTNESS:
The two measures which relate to completeness at requirements and
preliminary design are the Completeness measure (.8) and the
Traceability measure (1). The Consistency measures (1) were high
because the design team agreed to a standard design notation.
MAINTENANCE :
The Design Structure measure (score of .33), the Modular Implementation
measure (score of .57), and the consistency measures (1), relate to
maintainability. The Design Structure measure was slightly lower than
past experience has indicated it should be so we looked at it in some
detail. Several modules were being called by many other modules at
different levels of the system hjerarchy. This lowered the design
structure metric score. By identifying these modules as utilities the
complexity of the design was decreased.

5-12

Yol

T

N

W W Y wrRTwe LT e T TR TR e s

5.4.2 DETAILED DESIGN AND IMPLEMENTATION

5.4.2.1 Ge:. val Observations At Detailed Design and Implementation

The difficulty in developing software remotely in terms of turnaround and
obtaining complete output, and the fact that we had to apply the metrics
manually to the AMT development, prevented as effective use of the metrics as
would have been desired. Timeliness is especially critical during detailed
design and implementation because in order to affect the design and

implementation strategies the measurements have to be available on practically
a daily basis. This was not possible. The metrics were applied once during
the detailed design (worksheet 2b) and once when the code was complete
(worksheet 3) and are reported here to provide assurance that a high quality
product was provided. The information is also valuable for future extensions,
modifications, and transporting of the AMT.

5.4,2.2 Metrics Scores

Table 5.4.2.2-1 provides a summary of the metric scores calculated from
worksheets 2b and 3 applied to each module in the system. The scores shown
are averaged over each subsystem and over the entire system. The system
average score is calculated by taking the sum of each subsystem average score
multiplied by the number of routines measured in that subsystem and dividing
this sum by the total number of routines in the system. The measurements are
taken from 58 modules representing over 12,000 lines of code. The breakdown
of modules by subsystem is:

Executive Services Subsystems (EXS) 1N
Automated Measurement Subsystem (AMS) 4
Data Management Subsystem (DMS) 12
Utilities Subsystem (UTL) 7
Report Generation Subsystem (RGS) 24

Not included in the measurements is the Preprocessing Subsystem (PPS) which
includes the parser. This was existing code and the metrics were not applied
to it during the AMT development.

Individual module scores were available through the Metrics Report and also

through the Matrix Report. Analysis of these scores are in the following
paragraph.

5-13

MPYSr AT G V)

o atan st sek

P T e T —— v MRS A AT I R |
8 I
g
¥]
' *
- Table 5.4.2.2-1 L
& Implementation Metric Scores R
‘e :
METRIC SUBSYSTEM AVERAGE SCORES SYSTEM
AMS | Exs | _uTL |'DMS_ | RGS | AVERAGE .
ACCURACY AY.1 | 0 270 8| a7 | L6 .29 @ j
3 CONCISENESS 0.1 | 1. .o . .99 | .996 o
3 COMPLETENESS ce.l | .25 .s6| .38 .38 |.75| .25 s
L PROCEDURE CONSISTENCY ¢s.l | 5| .73 57| .58 | .96 | .76 R
X DATA CONSISTENCY cs.2 | .25| .7 29| .29 | .48 .39 :
L ITERATIVE PROCESSING EFFICIENCY EE.2 | .5 | .s5| .14 .92 | .42] .81 .
: DATA USAGE EFFICIENCY EE.3 | .46 .65 .45(.55 | .67 | .59 O
ERROR TOLERANCE CONTROL ET.l | .7s| .se| .a3| .83 | .96 | .77
ERROR TOLERANCE INPUT DATA ET.2 |0 38 .19 a7 |.29] .25 o
ERROR TOLERANCE COMPUTATION ET.3 | .08] .15 .07 .12 | .00 .07 .
DATA STORAGE EXPANDABILITY EX.1 {0 0 g4l 08 |21 | a2 ~ 1
COMPUTATIONAL EXTENSIBILITY £X.2 |0 .05{ .07| .08 |.04] .05 3
_ IMPLEMENTATION GENERALITY GE.2 | .63| .73| .s4| .83 |.77| .74 b
B MACHINE INDEPENDENCE M.l | .74| 88| .63| .84 | .s9| .84 T
E MODULAR IMPLEMENTATION Mo.2 | .31| .a6| .38(.38 | .36 .37 ®"
8 QUALITY OF COMMENTS s0.1 | .43 .37] .7m| .59 | .3 | .46 wr
5 EFFECTIVENESS OF COMMENTS sp.2 | .45| .60| .44| .58 |.63| .58 :
; DESCRIPTIVENESS OF LANGUAGE $0.3 | .75 .o1| .7 .92 |.96]| .9 D
! DESIGN STRUCTURE 1.1 | .45| .63| .45 .63 | .63| .59 .,'i
S COMPLEXITY s1.3 | .09l 2| .02 .09 |7 .12 gy
2 CODE SIMPLICITY st.4 | .49 62| .e3| .69 | .60 .6
- SYSTEM SOFTWARE INDEPENDENCE SS.1 | .25 .36| .33 .29 | .48 | .38
TRACEABILITY TR.1 [0 a8 140 .04 | .07
2 :
p- -~
.
§ !
g v
3 .
g |
2 5-14 .
L‘ ,

Tad T

A i 4)

5.4.2.3 Comparison With Quality Goals

Table 5.4.2.3-1 compares the subsystem and system average metric scores with
the metric scores identified in Table 5.2.2-3. These metric scores were
identified at the beginning of the project as goals the development team would
attempt to meet. The values chosen, threshold values, were chosen because
they represent either average or above average scores for those metrics based
on past experience. They were not contractual requirements but were set as
quality goals against which to assess the software development.

In most cases, the threshold values were met or exceeded providing some
confidence in the gquality of the software product. There were a few
exceptions. The modular implementation metric (M0.2) is currently measured
differently than previously specified. The modular implementation measure
(M0.2) during past studies included the following measurements:

¢ Module size in lines of source code (1 if less than 100, 0 if greater
than 100)

e Number of parameters which are control variables divided by number of

total calling parameters.

Input data controlled by calling module (1 if yes, O if no)

Output data controlled by calling module (1 if yes, O if no)

Control returned to calling modulue (1 if yes, O if no)

Is temporary storage shared by call/called modules (1 if no, O if yes)

These measurements were added together and divided by six to get the metric

value. Two additional measurements were added to the M0.2 metric in the AMT
implementation. These were:

o 1 divided by number of elements passed as parameters that were not
variables

e 1 divided by number of parameters not defined

The new metric value is the sum of the above six elements plus the new two
measurements divided by eight. However, in taking these 1latter two
measurements, the code inspectors interpreted both as zero when all parameters
passed in a call statement were variables and all parameters were defined.

W

ST

p— r.ﬁ Ty

TTTRY r.‘.‘- V‘rv'n

R A i SO Loeaee ¢

L

TN Y

R AL

N T, R .-t

Table 5.4.2.3-1 Comparison of Metric Scores with Specified Thresholds

METRICS

MODULAR IMPLEMENTATION
GENERAL CHECK LIST
QUANTITY OF COMMENTS

MO.2
GE.2
SD.1

EFFECTIVENESS OF COMMENTS SD.2
DESCRIPTIVENESS OF LANGUAGE SD.3

MACHINE INDEPENDENCE
PROCEDURE CONSISTENCY
DESIGN STRUCTURE
COMPLEXITY

CODE SIMPLICITY
CONCISENESS

MI.1
cs.1
SI.1
SI.3
SI.4
€0.1

*These

SUBSYSTEM AVERAGE SCORES

UTL DMS RGS AVG THRESHOLD

AMS EXS

31 .46 .38 .34 .36 .37
.63 .73 .54 .83 .77 74
43 .37 .71 .59 .36 .46
.45 .60 .44 .58 .63 58
J5 .91 .71 .92 .96 .90
.74 .88 .63 .84 .89 .84
.5 .73 .57 .58 .96 .76
45 .63 .45 .63 .63 .59
09 .12 .02 .09 .17 .12
49 .62 .43 .69 .61 .60
92 .94 .98 .91 .99 .94

values were

5-16

computed manually

SYS SPECIFIED

- ~r T r vy vy YT —
f P P

I,

bl

v—yr—v

e g~ G KA

This misinterpretation incorrectly lowered the M0.2 metric value by two
eighths (2/8) or .25. Thus the M0.2 scores should have been .56, .71, .63,
.59, .61 for the subsystems in Table 5.4.2.3-1 respectively and .62 for the
system average. The scores still do not meet the threshold but average §9% of
the threshold score.

The complexity measure did not meet the goal of .23 set. The logic of some of
the routines to calculate the metric scores and to parse and identify the
various constructs of COBOL is quite complicated. The average achieved, .12
is better that that recommended by McCabe [McCT] which equates to .1 in our
metric. The design structure metric (SI.1) was slightly lower, .59 compared
to the goal of .75, than the specified level. '

To compare strictly using the system average is potentially misleading. The
variation between subsystems is important to look at. A subsystem average may
be quite low and in fact be a weak link, in terms of quality, within the
system. The same analogy applies at a module level. The Exception Report
provides the capability within AMT to identify those modules which are
potential problem modules. The metric which varied greatest within the syctem
was the complexity measure. This metric was used to monitor the development
team and help during design and code walkthroughs to control the complexity of
the design. Because the metric values were not contractual requirements,
redesign and reimplementation was not done strictly to improve the metric
value but only done when the complexity was obviously too high and would have
a major impact on the quality of the software.

At the metric level, the AMT development team met 8 of the 11 (or 73%) of the
specified goals.

Another view is illustrated in Table 5.4.2.3-2, where those metrics related to
each quality factor and how well the software scored in terms of either the
thresholds established or past experience is shown. In the case of metrics
for which a threshold value was not established, the metric score was compared
with past experience. The table identifies if the values achieved for the AMT
were low (L), slightly higher (M), or much higher (H) than past experience.

T—

hdiane NN

Table 5.4.2.3-2 Metric Scores Related to Quality Goals

— ~y

.a. ﬂ. : .

v

1°0) SSaU3sLdu0)

b IS 3124 duyS 3po)

£€°15 A31x3|dwoy

L'IS 34n3anays ubysaq

2°S) Adouajsisuo) eleg

2°S) AJud3siISuo) 34Npadouy

t"d) ssaudla|coy

L'yl A3ttrqeadeay

L°30 A3i|eucumno) ejeq

1°2) A1t |euonwo) uoL eI LUMEIo)
2°X3 A3t11q1suaIx3 |euotieinduo)
L"X3 A3tiiqepuedx3 abeso3s eyeq
2°39 A1 |esdudn uopjejudiudtdum]
139 a4nsedyy adejuajui

1IN 3du3apuadapu} dutydey

LSS 2duapuadapu] 3aemM) oS WAISAS
£°qs abenbueq jo ssaudarldiadsag
2°0S SIUMIO) JO SSDUBAL3I3S3]
L°QS sjuauwio) 4o A3jjuend

2 OW uojjejuswa|du] Jeinpoy

Y Y Y M Y

N

N Y MM

Y

Y

M YNM Y

Y Yy

N

Y L NN Y Y,
|

L LY L

NMNM
e
!

xperience
xperiernc

LEGEND

5-18

xperience
Heasured

Base

Base
core Higher than

Threshold Value Not Achieved
Not

Threshold Value ichieved

Score Lower than
Score 'uch Higher than

S

it

RELATED
METRICS

FACTORS

PORTABILITY

FLEXIBILITY

REUSEABILITY

N
Y
|

u

|
|

HITEROPERABILITY
CORRECTNESS
MAINTATNABILITY

RIS -/ SR . S0 PRSP DRSS _ 8

BT N - s . WP L e AT e e v G
N | RNl e IENIEIRE o VT IR ol A

P

U R i e e T
Andindi et Rasi St A S A T T TN B .

Using this view, the performance of the development team, in terms of the
metrics relative to the six quality factors identified as important, can be
assessed. For example, for the quality factor, portability, four metrics
exceeded the specified threshold values, one metric for which a threshold was
not specified, scored slightly better than past experience, and only one
metric did not achieve the specified threshold value. Thus from a portability
viewpoint, five out of six (83%) of the metrics related to portability
exceeded expectations.

Using the metrics in this way, the development team could be assessed as
having met 83% (5 of 6) of their goals related to portability, 86% (6 of 7)
related to flexibility, 86X (6 of 7) related to reusability, 0¥ (0 of 1) for
interoperability, 25% (1 of 4) for correctness, and 60% (6 of 10) for
maintainability.

The NM indicator in the table identifies those metrics not measured. In most
cases, these metrics were not measured because without automated support, it
was not possible to measure them against any of the AMT source code.

In some cases, data or material was not available for measuring that
particular metric. An example of this situation is the Data Communication
(DC.1) metric. No other tool was identified to be interfaced with the AMT so
no consideration was given to how compatible the AMT data structure was with
any other tool.

Table 5.4.2.3-3 provides the results of substituting the average metric scores
for the system into the normalization functions. These normalization
functions, including the individual metric functions as well as the
multivariate functions, are defined in the Software Quality Measurement Manual
[mMcca 79].

Because the Modular Implementation Measure (M0.2) was measured differently
than previous studies, a constant of .25 was added to the M0.2 metric value to
arrive at a corrected normalization function rating. This correction constant
was only used for the normalization functions that contained the M0.2 metric.

5-19

Laaa .

i

-

' T =" I SV M)
(22-5 abed 335)
26 ($°IS) W €5° m
9L° | | (€°1S) W €5° M
pe* (L°IS) W 85" M
vo° (1°13) W LS NOILINNJ TVNAIAIGNI |
6° 6 Gb* (L °IS) W oL® + (1°13) W 8v" NOILINNS ILVINVAILINW | “
, ALITISVIT3Y N :
ve* (p°1S) Wp° m]
o€* (1°1S) Ws* |
b6 (€:as) w9* m
b (2°aS) WiL® !
29° (€°1S) WL2 NOILINNS TYNAIAIQNI m .
0L° 29° 92* (2°aS) WEE" + (2°OW) WhL + (£°IS) WL9 + 2- NOILONNS ILVIWVAILINW S w A
ALITIGYNIVINIVW o m i
0s* (£°05) W95 I
pe (2°0s) Wes A
£g* (3°39) weee :]
Le° (2°0W) W9* SNOILINNA TVNAIAIONI
0, 16° 96° (€°0S) W60° + (2°39) Wbt" + (2°OW) W22° NOILINNI ILVIYVAILINW
ALINISYXI1d
L8° (2°0S) Ws°1
26° (L°IN) WL°L
£9° (1°IS) WLo° L SNOILINNS TYNGIAIONI
SL° L x9°L (L°IW) Wv9® + (£°0S) WG°2Z + (2°GS) WL+ (L1°QS) W6L® + £°1- NOILINNS ILYINVAILINW
ALIT18V1Y¥0d
13S ONILVY Q3A3THIV
09 34005
:o_.umucm___m_.n_su 404 3JURWAOSADd uOLIIduUNg uoLjezL|ewAON €£-€°2°b°G 3|qe|
Ful cooc Pl T v '

Ty

In addition a correction to the normalization function for maintainability was
made. This correction is to account for using a different complexity measure,
SI.3. In the Factors in Software Quality study [MCCJ77a], Halstead's E
measure [HALM77] was used. In the Metrics Enhancement [MCCJ79] and the AMT
development, McCabe's [MCCT76] metric was used. This change was not taken
into account in the normalization function documented in the Software Quality
Measurement Manual. To account for the different measure, a factor of 2.46
multiplied by the complexity measure should be substituted for SI.3 in the
normalization function shown in Table 5.4.2.3-3 to arrive at the calculated
score. In the future, the normalization function recommended is:

- .2 + 1.5M(SI1.3) + .14M(M0.2) + .33M(SD.2) = m
when using McCabe's metric as the complexity metric (SI.3).

The resultant ratings are compared with the established goals in
Table 5.4.2.3-3. The individual factors are discussed below.

PORTABILITY

The AMT software is considered highly portable. The system software dependent
and machine dependent software have been minimized and localized. The metric
scores for these measures and others related to Portability are all relatively
high except for the Modular Implementation Measure, MO.2.

The goal identified for portability was .75. The Software Quality Measurement
Manual states that this rating is equivalent to 1 - (effort to transfer)/
(effort to implement). Thus a goal of .75 is the same as saying the effort to
transport a module of the AMT to another system should take -25% or less of the
effort to implement that module. The score achieved by calculating the
normalization function is equivalent to the rating. Thus a normalization
function value of .9 equates to a rating of .9 and means the software can be
transported to another system in 10% or less of the effort required to
implement the software.

The multivariate function for portability and the individual normalization
functions for all but the SI.1 metric exceeded the specified goal of .75. The

5-21

e

_‘.i

..

portability of the AMT was demonstrated by the relative ease with which the
initial prototype version of the AMT, developed on the VAX 11/780, was
transported to the RADC H6180. The value of 1.6 should be interpreted as 1.
Because the previous effort [McCJ79] to establish beta coefficients was based
upon a limited sample of projects and the dependent variable of portability is
somewhat illusive, the regression equations need to be adjusted to reflect a
more accurate representation. This will require additional portability data
from a wider range of projects to be analyzed.

- "ET'?',:'T"'- M7 DA
- . ’ ‘.". . B R Lt '

FLEXIBILITY

The AMT software exhibited characteristics that indicate it will be highly
flexible. The metrics related to flexibility were all relatively high as
shown in Table 5.4.2.3-1. A generalized parser was utilized in the Automated
Measurement Services Subsystems to facilitate modifying the AMT to process
other programming languages besides COBOL. The grammar description of COBOL
[developed was at a high enough level of abstraction to handle a wide number of
COBOL grammars while still measuring the needed characteristics to calculate
the metrics. The normalization function calculation resulted in a value of
.56. This value relates to the average amount of effort it takes to make a
modification to the software based on a change in requirements. The
relationship is 1/.56 = the average person days to make a modification, or
1.78 person days. The rating for flexibility equals 1 - .05x(average person
days to modify). The rating therefore is .91.

~—

M md maas s

7~ Masvaus

: REUSEABILITY g
_ The software exhibited high scores for those metrics related to reuseability.]
- The interfaces and functional decomposition of the system are well defined to
ti facilitate reuse. As shown in Table 5.4.2.3-1 and Table 5.4.2.3-2, six of the

seven metrics vrelated to reuseability exceeded expectations. These
expectations were based on threshold values or past experience. In
particular, the three metrics related to comments (DS.1, SD.2, SD.3), the
. machine independence metric (MI.1), and the implementation generality metric
(GE.2), all exceeded the threshold values specified. The system software
independence metric (SS.1) was higher than the values experienced during the
Metric Enhancement study. The Modular Implementation metric (M0.2) was the _
[only reuseability-related metric that did not meet or exceed the threshold .
value specified.

Sy @ I - C
d ‘4“*“""“ g

S S ey -
“ ¢

P p——

5-22

YW

MR
|
!

b
[
]
1
| SN

T Y

LA 2 ach e s by

v ~y v - R T
d . . 1 .-

-

INTEROPERABILITY

While the metrics needed to assess this quality factor were not measured,
facilites to allow interfacing with the AMT were built into the system. The
PUT and GET commands can be utilized to interact with the AMT data base. They
could be used to extract pertinent data from output of an existing software
tools and placed into the AMT data base. The only metric measured that was
related to interoperability was M0.2 which has been discussed already.

CORRECTNESS

The metrics related to this quality factor were mixed in their performance at
best. Only one metric, CS.2, had a specified threshold value for the AMT
development. That metric exceeded the threshold. Three other metrics related
to correctness did not achieve values as high as those of past studies.

The interpretation that can be made is that the previous studies involved
taking the measurements from existing operational systems which you would
expect to be more mature, have more complete documentation, and therefore
achieve higher metric scores than the AMT.

The testing process used five COBOL programs provided from a production system
at the USACSC. The Test Plan (CORL A0015) and the Test Analysis Report (CDRL
A014) describe the test process. A1l planned tests except one were
successfully aczumplished. One functional capability not provided was the
alternate print capability.

MAINTAINABILITY

The comments, structure, implementation techniques, and control flow
complexity were controlled during the development, and these practices were
reflected in the metric scores. The normalization function using the
multiplication factor discussed previously for the complexity metric (SI.3)
and the addition factor for the M0.2 metric resulted in a value of .26. This
equates (1/.26) to an average of 3.8 person days to fix an err.r in the
software. The rating then is 1 - .I1x (average effort to fix an error) or
.62. This 1is slightly lower than the .7 rating or goal specified. The
complexity of the system was slightly higher than desired and resulted in the
slightly lower rating.

5-23

_.)

P

PP

Aol

RELIABILITY

Reliability was not a quality factor specified as critically important to the
AMT because it 1is basically a prototype system. However, for evaluation
purposes, we monitored the performance of the metric scores related to the
reliability normalization function. The calculated normalization function
value was .45. The rating is calculated by doubling this value to .9 and is
equated to 1 - (number of errors)/(100 lines of code). The industry average
is approximately 2 errors per 100 lines of code or .98, The .9 achieved by
the AMT development met the goal specified.

5.5 COMPARISON OF AMT METRIC SCORES WITH PAST EXPERIENCES

Table 5.5-1 provides a comparison of the average metric scores for the AMT
with past experiences. These past experiences include the JOVIAL Command and
Control System used during the Factors in Software Quality Contract (MCCJ77),
the Management Information System (MARDIS) written in COBOL and The Software
Support System written in FORTRAN that were used in the Metrics Enhancement
Contract (MCCJ79), a Data Base Management System written in JOVIAL, and a
Telemetry Prediction Simulation System written in JOVIAL. The AMT was written
in a structured FORTRAN. The annotation "NM" in the table indicates a metric
that was not measured.

The following metrics had scores higher for the AMT than past experiences:
C0.1 Conciseness
ET.1 Error Tolerance
GE.2 Generality
MI.1 Machine Independence
SD.3 Descriptiveness of Language
§S.1 System Software Independence

These metrics indicate the concern primarily for portability and flexibility
during the AMT development.

5-24

5 U

. L T s e e e s e T T T e e R e e e BT TR TR TR T TR T AT T T T Y S T e T TR T R T W e w e T e T W T s v‘]

L) A
- Table 5.5-1 .
Implementation Metric Score Comparisons ",:-_;
¥ MERIC AMT CoBOL *,
. AVERAGE JOVIAL MIS JOVIAL JuVIAL -
% SCORE _ C2__ FORTRAN DBMS EXS E
: g
ACCURACY AY.1 .29 NM NM MM .
CONCISENESS 0.1 .996 J8 2 .75 .60 S
COMPLETENESS CP.1 .25 92 MM L SN
PROCEDURE CONSISTENCY CS.1 .76 99 KM MW N
DATA CONSISTENCY 5.2 .39 .8 68 M MW v
_. ITERATIVE PROCESSING EFFICIENCY EE.2 .51 67 .50 KM MM
DATA USAGE EFFICIENCY EE.3 .59 96 .85 WM MW o
L ERROR TALERANCE CONTROL ET.1 .77 J7 M M MW S
C ERROR TOLERANCE INPUT DATA ET.2 .25 84 02 WM MW " !
- ERROR TOLERANCE COMPUTATION ET.3 .07 51 07 N MM)
E DATA STORAGE EXPANDABILITY EX.1 .12 NM M MW
; COMPUTATIONAL EXTENSIBILITY EX.2 .05 NM 07 WM w B
| IMPLEMENATION GENERALITY GE.2 .74 A48 .38 12 L2 B
MACHINE INDEPENDENCE MI.1 .84 J3 21 M w o
MODULAR IMPLEMENTATION M.2 .37 68 1 WM MW i
QUANTITY OF COMMENTS SD.1 .46 69 .35 .38 .35 e
EFFECTIVE OF COMMENTS sD.2 .58 J4 40 NM MM e
DESCRIPTIVENESS OF LANGUAGE sD.3 .90 82 .57 M MW L
DESIGN STRUCTURE SI.1 .59 64 .87 M W o
COMPLEXITY SI.3 .12 .66 .23 .10 .08) . i
CODE SIMPLICITY s1.4 .60 76 .57 .66 .73 s
SYSTEM SOFTWARE INDEPENDENCE SS.1 .38 8 .01 03 .12 '
TRACEABILITY R. .07 1 M MO
NORMAL IZATION FUNCTION (ratings) T
PORTABILITY 1 M 23 M MW N
FLEXIBILITY .91 88 .86 MM S
MAINTAINABILITY .62 .68 .9 MW s
RELIABILITY .9 98 .96 WM M i
NM = NOT MEASURED
5-25 '_
L 4

S peww o L rfrr"*‘uﬁ_ oy
. ‘ UL s LN

i B et
-

Ty

r.

vy I'.f ™Y

TTYTTY

The following metrics had scores lower for the AMT than past experiences:

CP.1 Completeness

CS.1 Procedure Consistency
CS.2 Data Consistency

EE.3 Data Usage Efficiency
M0.2 Modular Implementation
SI.1 Design Structure

TR.1 Traceability

These metrics indicate a lesser attention provided to characteristics related
to correctness and reliability. The scores of the AMT metrics were not low in
the absolute sense but were 1lower than those achieved in the command and
control software and other contract deliverable software. This is
understandable considering the AMT is a prototype research tool. Also shown
in the table are the ratings achieved for the four factors that have
established normalization functions. The relative ratings for the Factors in
Software Quality (FSQ) study, the Metrics Enhancement (ME) study, and the
Automated Measurement Tool (AMT) development for these factors were (from high
to low):

PORTABILITY MAINTAINABILITY

AMT ME

FSQ FSQ

ME AMT
FLEXIBILITY RELIABILITY

AMT FSQ

FSQ ME

ME AMT

5.6 EXPERIMENT CONCLUSIONS

As a result of applying the metrics during the development of the AMT several
general observations can be made. First the use of the quality factors to
identify what qualities were desired provided an excellent technigue for
focusing standards and conventions and the goals of the development team to

5-26

g

ek A cAMmIN. sl] Ll "

i) @

el

PR

e e i

-

meet the customers requirements. Second, the use of the metrics during the
development as a development team tool as well as a mechanism for reviewing
requirements with the customer proved effective. Third, based on the metrics,
the AMT development was reasonably successful at achieving the quality goals
set at the beginning of the project. At the metric level, 8 of 11 (83%)
specified goals were met. Of the three metric thresholds not achieved, the
scores realized were 89%, 79% and 52% of the values desired. At the
normalization functon level, 3 of 4 specified goals were met. The one not met
(maintainability) was 89% of the desired value.

There were some negative aspects identified. First, the setting of the
specific quality goals was done with relatively little experience data. In
some cases, such as the modular implementation (M0.2) where the metric
algorithm changed and the goal had been set too high, the goals established
were not reasonable. The setting of goals should be carefully considered and
reviewed between the customer and development team. Second, continued
validation of the normalization functions is required. A complete validation,
j.e., statistical analysis, of the data should be performed on new sets of
data to gain more confidence in the normalization functions accuracy. Third,
considerable interaction between the customer and the development team is
needed to ensure effective use of the aquality feedback provided by the
metrics. Tradeoff analyses are necessary to ensure wasted effort is not spent
correcting deficiencies which are not important or measuring metrics which are
not critical. Fourth, automated support was not available and hindered the
effective daily use of the metrics by the development team. In general the
following conclusions can be drawn:

(1) The metrics proved to be an effective tool for setting quality goals,
identifying standards and conventions to guide the development, and
monitoring the progress toward these goals in-line with the
development.

(2) Automated tools are necessary to provided reliable, timely metric
information.

5-27

PP

. .
PR Y

aaala at's

A .
e Alanahaes e

vV

MR / AALAARRIMY

R A el e
[N .

Lol e o0 AR TR B8 o
LYYy

Ty Ty T TN TR YY

(5)

An interactive customer is necessary. More quantitative information
about the software product is available and should be used.

The normalization functions need continued validation before they can
be generally used. They should be validated and tailored to specific
applications and development environments.

The metrics could be utilized as a contractual instrument. The
recommendation is to use them for determining incentive or award
fees. Their use as an absolute acceptance criteria is possible but
the specific metrics and threshold values would have to be negotiated
prior to contract start.

5-28

..........

i

o
(]

!
_ 4

re B Beereinn S,

bt ae o

SECTION 6
FUTURE DEVELOPMENT

The AMT was developed to demonstrate the concept of automated collection and
reporting of software metrics. A minimum set of metrics are automatically
collected from COBOL source code. A fairly extensive set of reports are

generated to fulfill the requirements of a number of personnel who might use
the AMT.

Several areas of the AMT could be enhanced for use on an actual large scale
software development. Under the category of enhancements, the following
aspects of the AMT could be modified or added:

(1) Add a form entry system for easier manual input of worksheet data.

(2) Modify the Report Generation Services Subsystem to be more flexible
in providing user defined reports.

(3) Provide an interface to a statistical package.
(4) Interface AMT with other tools, especially tools that would support

automated measurement during requirements definition and design
phases.

(5) Expand COBOL grammar description and Automated Measurement Services
Subsystem to support additional metrics automation.

(6) Define another language grammar (eg. FORTRAN) to parser, develop
scanner and incorporate processing capability for another language.

(7) Tie AMT into Configuration Control and Error Reporting Systems or
Program Support Libraries.

(8) Transport AMT to other computing environments.

(9) Expand data base ca,. .ities beyond 50 modules.

6-1

k

And od abon t

[P § PP VPR PR W Y

=T

SECTION 7
REFERENCES

[ALIM79] Al-Jarrah, M., et al
“An Empirical Analysis of COBOL Programs"
Software - Practice and Experience, Vol. 9, Issue No.5, May 1979.

[BASV78] Basili, V., et al
"Investigating Software Development Approaches"
AFOSR TR-688, August 1978.

[BAUF73] Bauer, F. L. (Ed)
Advanced Course on Software Engineering
Springer - Verlag, Berline, 1973.

[BOEB73]) Boehm, B.
"Software and Its Impact: A Quantitative Report"
Datamation, April 1973.

[cava78] Cavano, J., McCall, J.
"A Framework for the Measurement of Software Quality",
Proceedings ACM Software Quality Assurance Workshop, November 1978,

[CHER] Chevance, R. J., et al
"Static Profile and Dynamic Behavior of COBOL Programs*®
SIGPLAN, reference open.

[CONS75] Constantine, L. Yourdon, E.
Structured Design, Yourdon Press, N. Y., 1975.

[CULK79] Culik
“The Cyclomatic Number and the Normal Number of Programs"
ACM SIGPLAN Notices, Vol. 14, No. 4, April 1979,

(DeMR761] DeMille, R. A., et al
“Can Structured Programs be Efficient?", ACM SIGPLAN Notices,
October 1976.

7-1

'-" N

e e
o) :

PEIPLICEIUS NS P SRR

g - - - . - D < Y T PIEL I She aes Snni Jaaee T —p—

[DEWR78] Dewar, R., Hage, J.
“Size, Technology, Complexity, and Structual Differentiation:
Toward a Theoretical Synthesis", Adminstrative Science Quarterly,
pp 111-136, March 1978,

dwinat v vy "
K d T e

[DIJE69] Dijkstra, E. W.
“NATO Science Committee Report", January 1969.

[DoDMAN] DoD Manual 4120.17-M
Automated Data Systems Documentation Standards

[DZ1IW78] Dzida, W., et al
"User-Perceived Quality of Interactive Systems", Proceedings of 3rd
International Conference on Software Engineering, 1978

¢ [FAGM76] Fagan, M. E.
“Design and Code Inspections and Process Control in the Development
of Programs", IBM Technical Report TR 00.2763, Poughkeepsie, 1976.

[FITA78] Fitzsimmons, A, Love, T.
“A Review and Evaluation of Software Science",
ACM Commuting Surveys, Vol. 10, No. 1, March 1978.

FFLEJ72] Fleiss, J. E., et al
"Programming for Transferability"
NTIS Memorandum AD-750 897, 1972.

[FOSL76] Fosdick, L. D., Osterweil, L. J.
“Data Flow Analysis in Software Reliability", ACM Computing Surveys
Special Issue: Reliable Software I, 1976.

[FRIR78] Fried, R.
"Monitoring Data Integrity"
Datamation, June 1978.

& 7-2

[aars uae mam e o - & g aC R AR AT ——

[GAIE78] Gainer, E., et al
“The Design of a Reliable Application System"

Proceedings of the 3rd International Conference on Software Engineering,

1978.

[GELD79] Gelperin, D.
“Testing Maintainability"
ACM Software Engineering Notes, Vol. 4, No. 2, April 1979.

[GOLJ73] Goldberg, J., ed.
Proceedings of the Symposium on the High Cost of Software,
Monterey, 1973

[GORG71] Gorry, G. A., Scott Morton, M.S.
“A Framework for Management Information Systems"
Sloan Management Review, Vol. 13, No. 1,
Fall 1971, MIT Cambridge, Mass.

[HALM77] Halstead, M.
Elements of Software Science Elseview Computer Science Library,
New York, 1977.

[HANS76] Hantler, S. L., King, J. C.
"An Introduction to Proving the Correctness of Programs"
ACM Computing Surveys Special Issue: Reliable Software I,
September 1976.

[HECS77] Hecht, M. S,
Flow Analysis of Computer Programs, Elsevier North-Holland,
New York, 1977.

[(HETB78] Hetzel, B.
"A Perspective on Software Development"

Proceedings of the 3rd International Conference on Software Engineering,

1978.

7-3

Tala aima M bAah e o Ak _dee ke

[PUCIPSIEN

P S S a

[HOAC78] Hoare, C.A.R.
"Software Engineering: A Keynote Address*, Proceedings of the 3rd

International Conference on Software Engineering, 1978.

[HORJ73] Horning, J. J., Randell, B.
"Process Structuring"
ACM Computing Surveys, Vol. 5, No. 1, March 1973.

[IMP74] “Improved Programming Technologies - An Overview"
IBM TR-GC20-1850-0, 1974.

[JACM78] Jackson, M. A,
"Information Systems: Modeling, Sequences and Transformation"
Proceedings of the 3rd International Conference on Software

Engineering, 1978.

[JOHJI75] Johnson, J. P.
"Software Reliability Measurement"
NTIS AD-A019-147, December 1975.

[KAUR75] Kauffman, R.
"COBOL /Structured Programming - Will the Marriage Survive"
Infosystems February 1975.

[KNUD73] Knuth, D. E,
"A Review of "Structured Programming",
STAN-CS-73-371 Computer Science Dept., Stanford University, 1973.

[K0SS74] Kosaraju, S. R., Ledgard, M, F.
Concepts in Quality Software Design
NBS Technical Note 942, Washington 1974,

[KURS75] Kurki-Suonio, R.
“Towards Better Structured Definitions of Programming Languages",
STAN-CS-75-500 Computer Science Dept., Stanford University, 1975.

7-4

S R R e e e e e Ty s o e e Moy s ey e e o v mo YTy T LT T oL YSToOYT TSmO LT LT T e T e T e T . T

——— e e e e

PP D-I W S Ty

~]

AR A e 4 ad ot 95— aad

T

[LIEB78] Lientz, B., et al
“Characteristics of Applications Software Maintenance"
Communications of the ACM, Vol. 21, No. 6, June 1978,

[MATM78] Matsumoto, M.
“Design and Quality in MIS Environments*
Software Metrics Enhancement Task Internal Memorandum No. 1,
August 1978.

[McCC78] McClure, C. L.
Reducing COBOL Complexity through Structured Programming
Van Nostrand Reinhold Co., 1978.

[McCJ77a] McCall, J., Richards, P., Walters, G.
"Factors in Software Quality", 3 Vols.
RADC TR 77-369, November 1977.

[McCJ77b] McCall, J., Richards, P., Walters, G.
"Metrics for Software Quality Evaluation and Prediction"

Proceedings of the NASA/Goddard Second Summer Engineering Workshop,

——————" T ———, oy

September 1977.

[McCJ78a] McCall, J.

“The Quality of Software Quality Metrics in Large-Scale Software Systems
Development", Proceedings of the Second Software Life Cycle Management

Workshop, August 1978.

[McCJ79] McCall, J., Matsumoto, M.
“Software Quality Metrics Enhancements"
RADC TR 80-109, April 1980.

[McCJ78b] McCall, J.
“Software Quality: The I1lusive Measurement"
Software Quality Management Conference, September 1978.

[MCCT76] McCabe, T. J.

"A Complexity Measure", IEEE Transactions on Software Engineering,

December, 1976.

« ami

e rv

_ [MCKJ79] McKissick, J., et al
3 "The Software Development Notebook - A Proven Technique" Proceedings 1979

Annual Reliability and Maintainability Symposium, January 1979.

[MILE79] Miller, E.
“Some Statistics from the Software Test Factory"
ACM Software Engineering Notes, Vol. 4, No. 1, January 1979.

(LITB78] Littlewood, B.
"How to Measure Reliability, and How Not to..."
3rd Proceedings of the International Conference on Software Engineering,

Atlanta, 1978.

2 A

[LovL77] Love, L. T.
Relating Individual Difference in Computer Programming Performance to

LA s e 4n an a0y
-) B

Human Information Processing Abilities, Ph.D Thesis University of
Washington, 1977.

[LOVT77A] Love, T.
"An Experimental Investigation of the Effect of Program Structure on

Program Understanding", G.E. Technical Information Series TIS77I1SP006,
1977.

SaRiai ~~ PEASRARAAS

rv

[LOVT776] Love, T.

"A Preliminary Experiment to Test Influence on Human Understanding of
Software", G.E. Technical Information Series TIS77ISP007, 1977.

| [LUCH741 Lucas, H. C.
1 Toward Creative Systems Design
Columbia University Press, New York, 1974

! [LYOG78] Lyon, G.
“COBOL Instrumentation and Debugging: A Case Study" NBS Special
Publication 500-26, U.S. Dept. of Commerce 1978.

1 (MILSTD] MIL-STD-490
Specification Practices

o‘J

S AR
, it L,

.

*
.
-y

e e
A e 4

-

wvr T v

Bt |
K

[M1Y178] Miyamoto, I.
"Towards an Effective Software Reliability Evaluation® Proceedings of the

3rd International Conference on Software Engineering, 1978.

[MYEG75] MYERS, G. S.
Reliable Software Through Composite Design
Petrocelli/Charter, 1975.

[PAND76] Panzl, D. J.

“Test Procedures: A New Approach to Software Verification" Proceedings
of the Second International Conference on Software Engineering, San
Francisco, 1976.

[PARD75] Parnas, D. L.

“The Influence of Software Structure on Reliability", Proceedings of the
International Conference on Reliable Software, Los Angeles, 1975.

[PEDJ78] Pederson, J. T., Buckle, J. K.

“Kongsberg's Road to an Industrial Software Methodology", Proceedings of
the 3rd Internation Conference on Software Engineering, 1978.

[PYSA78] Pyster, A., Dutra, A.
"Error-Checking Compilers and Portability"
Software Practice and Experience, Vol. 8, Issue 1,
January - February 1978,

[RICP76] Richards, P., Chang, P.

“localization of Variables: A Measure of Complexity", GE TIS 76CIS0Q7,
December 1976.

[RIDW78] Riddle, W. E., et al
“Behavior Modelling During Software Design"

Proceedings of the 3rd International Conference on Software Engineering,
1978.

7-7

V")

PRV W ¢

"y

.
- Y
PP SN IR Y W U 2

P

g

I atas i R g 't Mn B 20 M I e eon MR o a e e OO A Mt Sl b N PR Ul SRR A ROt g e — o

[ROBL75] Robinson, L., et al
“The Verification of COBOL Programs"
NTIS Memorandum, June 1975.

[SAMS76] "Contractor Software Quality Assurance Evaluation Guide"
SAMSO Pamphlet 74-2, Los Angeles, 1976.

[STR74] “Structured Programming Series"
RADC, 15 Vols., 1974-1975.

[TAGW77] Taggart, W. M. Jr, Tharp, M. O.
“pA survey of Information Requirements Analysis Techniques" ACM Computing

Surveys, Vol. 9, No. 4, 1977.

[USACSCM] USACSC Manual 18-1
Automatic Data Processing System Development, Maintenance and
Documentation Standards and Procedures Manual.

[VINW77] Vinson, W. D., Heany, D. F.
“Is Quality Out of Control?"
Harvard Business Review, November-December 1977.

[WALG78a] Walter, G., McCall. J.
“The Development of Metrics for Software R&D"
1978 Proceedings, Annual Reliability and Maintainability Symposium,
January 1978.

[WALG78b] Walters, G.

“Application of Metrics to Software Quality Management Programs", Software
Quality Management Conference, September 1978.

[WEGP76] Wegner, P.
"Research Paradigms in Computer Science"
Proceedings of the 2nd International Conference on Software Engineering,

San Francisco, 1976.

;.,.

=

PR NP ¥ PR YUY SV SR NP A R S 8

[WEGP78] Wegner, P.
“Research Directions in Software Technology"

Proceedings of the 3rd International Conference on Software Engineering,
1978.

[WIRN65] Wirth, N.

“On Certain Basic Concepts of Programming Languages"

Technical Report No, CS65, Computer Science Department, Stanford
University, 1965.

[WONG78] Wong, G.
"Design Methodology for Computer System Modeling Tools"
Symposium on Modeling and Simulation Methodology,
August 1978, Rehorot, Isreal.

[YEHR76] Yeh, R. T., ed.

"Software Validation", ACM Computing Surveys, Special Issue; Reliable
Software I, 1976.

RECOMMENDED REFERENCES

n VAX/WS Command Language User's Guide - Order No. AA-D023B-TE
VAX-11 FORTRAN IV-PLUS Language Reference Manual - Order No. AA-DO34A-TE
t! VAX-11 FORTRAN IV-PLUS User's Guide - Order No. AA-DO35A-TE

Honeywell TSS General Information Manual - Series 60 (Level 66)/6000
Order No. DD22

3 Honeywell FORTRAN Reference Manual - Series 60 (Level 66)/6000

g Order No. DG75
3

! General Electric NED Time-Share User's Guide NEDE-21328 Class II

yi

-

A

‘ .

l
'L .
{

7-10

T]

B

7 3,

N . - *. P

- PR Aean Rttt il AR A At A bR

APPENDIX A
SAMPLE REPORTS

_>‘- -4

N
| J

Ade

R I R D AR FadlN

Pa. 1
METRIC WORKSHEET 1 SYSTEM OATE 2 -7
REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: _ AMT INSPECTOR: _MATSOMITH
[. COMPLETENESS (CORRECTNESS, RELIABILITY)
1. Number of major functions identified (equivalent to CPCI). (2.1 s
2. Are requirements itamized so that the varicus functions to be performed, thefr | . |
inputs and outputs, are clearly delineated? CP.1(1) QJ_N_
3. Number of major data references. CP.1(2) 33
4. How many of these data refarences are not defined? CP.1(2) %)
5. How many defined functions are not used? CP.1(3) o)
I §. How many referenced functions area not defined? CP.1(4) o
7. How many data refsrencas are not used? CP.1(2) o
8. How many referencad data references are not defined? CP.1(§)
9. Is the flow of procassing and all decision points in that flow described? cP.1(S] _Y I X
10. How many prodlem reports relatad to the requirements have been recorded? CP.1(7) O
%11. How many of thosa problem reports have been closed (resolved)? CP.1(7) NA
!
[I. PRECISION (RELIABILITY)
1. HMas an error analysis been performad and budgeted to functions? AY.1(1) Y
2. Are there definftive statements of the accuracy requiremants for inputs,
outauts, processing, and constants? AY.1(2) ¥
' 3. Are there definitive statements of the error tolerance of inout data? E7.2(1) y
| 4. Are tnere definitive statements o° the requirements for recovery from
computational failures? ET.3(1) D
5. [s there a3 cefinitive statement of the requirement for recovery from hargware
faulits? ET.4(1) !
8. [s there a definitive statement of the requirements for recovery from device
arrors? ET.S(1) Y

[LI. SECSURITY (INTEGRITY)

”»

-

wn

Is there 3 definitive statament of the requirements for user input/outsut @'
access controis? AC.1(1)

:s there 2 definitive statement of the requirements for data dase access

controls? AC.1(2) l@l N
[s there 2 definitive statament of the requirsments “or memory arotacsicn ,

across tasks? AC.1(3)

is there 2 definitive statement of he requirements <sr recording and ‘ @
reoorting access ta system? AA.1(1)]

[s chere a definitive statement of the requirsments for immediate v I
fndication of accass violation? 3A.1(2) '

b
o

A-2

L - LIPS I P PG o

Ty T T T T T R TR w Ty T T T T T

T VT YT

-.’.«

PPN U S.)

METRIC WORKSHEET 1 SYSTEM DATE

REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME :

- 4
e | [NSPECTOR: L4

IV. HUMAN INTERFACE (USABILITY)

Are all steps in the operation described (operations concept)? 0P.1(1)
Are all error conditions to be reported to operator/user identified and
the responses described? 0P.1(2)

[s there a statement of the requirement for the capability to interrupt
operation, obtain status, modify, and continue processing? 0QP.1(3)

[s there a definitive statement of requirements for optional 1““(:?4‘?2%)?

[s there a definitive statement of requirements for optional output r;'?(!;‘;?
CM.

Is there a definitive statement of requirements for selective output

control? (M.2(1)

V. PERFORMANCE (EFFICIENCY)

dave performance requiremants (storage and run time) been identified for
the functions to be performed? EE.1

VI. SYSTEM [NTERFACES (INTERQPERABILITY)

[s there .a defnitive statement of the requirements for communicatfon with
other systems? CC.1(1)

[s there a definitive statement of the requirements for standard data
representations for communication with other systems? 0C.1(1)

YIL. [INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while

applying this checkltst.

A-3

< e W et Pl B s s B s B B . B B Mot

‘Y.Y“_—*IT-Y' v

e Lo oo
PR . LT

- .

-

YTy
. T Y

- . .

F-
3

b
b
b
b
8

T X Y

Pg.

METRIC WORKSHEET 2A SYSTEM DATE;
OESIGN/SYSTEM LEVEL NaME: AN INSPECTOR; __ Qfal
[. COMPLETENESS (CORRECTNESS, RELIABILITY)
1. Is there a matrix relating itemized requirements to modules which implement @ (,‘
those requirements? TR.] ‘ .
2. How many major functions (CPCIS) are {dentified? CP.! [N&
3. How many functions identified are not defineq? C(P.1(2) Lo
4. How many defined functions are not used? CP.1(3) C)
§5. How many interfaces between functions are not defined? C(?.1(6) '_.[__
6. Number of total problem reports recorded? CP.1(7) =)
7. Number of those reports that have not been closed (resoived?) CP.1(7)
Profile of problem reports: (number of following types) g Eogggtatfonﬂ
0
I1. PRECISION (RELIABILITY) b —
1. Have matn library routines to be used been | . }g gg:?{;zf:tf::”"’ e
checked for sufficiency with regards to Y I@ .+ Routine/Routine Q.
accuracy requirements? AY.1(3) L s R;::::::%;stem S
2. Is concurrent processing centrally i y @ 1 Ttnterfaco -
. Tape Processing .
. controlled? ET.I(1) ' 17. User interface I
3. How many error conditions are reported ! l 18. data base interface [
by the system? ET.1(2) ! ! 19. uz;:n;::ucsted '
4. How many of those errors are automatically |—— 20. Preset data -
fixed or bypassed and processing ccntinu?s? o 1 2. G;:g:li;:;;ahle }
5. How many, require operator fnterventign?, 1| 5 T 22 Recurrent errors |
6. Are provisions for recovery from hardware Ty 23. Documentation . !
faults provided? ET.4(2) | 24. Requirement ;" -
7. Are provisions for recavery from device __6 compliance I
errars provided? ET.5(2) ! Y |2 25' 83:;:?3:5 ——
H I N |
[I1 STRUCTURE (RELIABILITY, HAINTAINABILITYHESABILITYwn :
PORTABILITY, REUSABILITY, INTEROPERABILITY) i
1. s a hierarchy of system, identifying all modules in the system provided’ lm :
st.I(y)y 1T
2. Number of Modules SI.1(2) M0.2(1) ._J..Lﬂl_..
3. Are there any duplicate functions? SI.1(2) { |
4. 3ased on hierarchy or a call/cailed matrix, how many modules are calliea by | ;
nore than one other module? GE.1 M0.2(1) ‘
5. Are the constants used in the system defined once? GE.2(5) ‘

A-4

e

e o

.

T

Pg. 2

L

HMETRIC AGRK3NEIT 2A SYSTEM OATE;

DESIGN/SYSTEM LEVEL NAME INSPECTOR:

[V. OPTIMIZATION (EFFICIENCY)

D 0 N Oy OV & D N —
.« e s e e & e s

Are storage requirements allocated to design? SE.1(1)
Are virtyal storage facilities used? SE.1(2)
Is dynamic memory management used? SE.1(5)
[s a2 performance optimizing compiler used? EE.2(2)
Is giobal data defined once? (CS.2(3)
Have Data Sase or files been organized for efficient processing? EE.3(5)
s data packing used? EE.2(S)
Number of overlays £E.2(4)
Qverlay efficiency - memory allocation EE.2(8)
10. max overlay size
11. min overlay size

V. SECURITY (INTEGRITY)

& W

Are user Input/Output access controls provided? AC.1(1)

Are Oata Base access controls provided? AC.1(2)

Is memory protection across tasks provided? AC.1(3)

Are there provisions for recording and reporting errors? AC.2(1,2)

VI. SYSTEM INTERFACES (INTEROPERABILITY)

N £ W NN —
e« e e s

o
.

How many other systems will this system interface with? CC.1(1)

Have protoc | standards been established? CC.1(2)

Are they being complied with? (C.1(2)

Number of modules used for input and output to other systems? CC.1(3,4)
Has a standard data representation been established or translation
standards between representations been established? 0C.1(1)

Are they being complied with? 0C.1(2)

Number of modules used to perform translations? 0C.1(3)

VII. HUMAN [NTERFACE (USABILITY)

Are all steps in operation described including alternative flows? OP.1(1)

<

Number of operator actions? OP.1(4) <

4

1

A-5

p——
PN

..'_—.J

-.."» <

PRI

Pg.3.
:, METRIC WORKSHEET 2A SYSTEM [OATE:
F DESIGN/SYSTEM LEVEL NAME : INSPECTOR >
L
& VII. HUMAN INTERFACZ (USABILITY) (Continued) &
' 3. Estimated or Actual time to perform? OP.1(4) —
4. Budgeted time for complete job? OP.1(4)
f‘ 5. Are job set up and tear down procedures uescribed? Qp.1(5) Y N ' @ ‘
6. Is a hard copy of operator interactions to be maintained? OP.1(6) Y N ! !
7. Number of operator messages and responses? (P.1/2) ;]
8. Number of different formats? OP.1(2)] :
9. Are all error conditions and responses appropriately described? 0P.1(2) y N |)
(10. DOoes the capability exist for the operato- to interrupt, obtain status, l L2
| save, modify, and continue processing? 0P,1(3) Y N ,
11. Are lesson plans/training materials for operators, end users, and I) |
maintainers provided? TN.1(1) Y N - fi
12. Are realistic, simulated exercises provided? TN.1(2) Y N ! -
:‘ 13. Are help and diagnostic information available? TN.1(3) Y N | ®
: 14. Number of input formats CM.1(2) [
{ 15. Number of fnput values CM.1(1) ||
g 16. Number of default values (M.1(1) ; | o
- 17. Number of self-identifying input values CM.1(3) l ;
E 18. Can fnput be verified by user prior to execution? CM.1(4) 1 A ! ®
{ 19. Is input terminated by explicitly defined by logical and of input? CM.1(5 Y N | . 1
b 20. Can input be specified from different media? CM.1(6) Y N l
= 21. Are there selective output controls? (M.2(1) y N | :
- 22. Do outputs have unique descriptive user oriented labels? CM.2(S) Y N |]
{ 23. Do outputs have user oriented units? CM.2(3) y | '
24. Number of output formats: CM.2(4) ! -y
25. Are logical groups of output separated for user emamination? (M.2(S) Y N |
26. Are relationships between error messages and outputs unambiguous? CM.2(6 Y N l
27. Are there provisions for directing output to different media? (M.2(7) ! N 1
"4 VIII. TESTING (TESTABILITY) APPLY TO TEST PLAN, PROCEDURES, RESULTS 2 »
1. Number of paths? IN.1(1) 4. Number of input parameters to
2 Number of paths to be :estiﬂ‘:’] . be tested? IN.1(2)
L'.: Number of input paramtersm']“ 5. .umber of interfaces? iN.2(1)
by .

A-6

“AD-R121 360 RUTOHRTION OF QUALITY HERSUREHEMT(U) G R
CO UUNNYVALE CALIF J A MCCALL ET AL. SEP 82
RADC-TR-82-247 F308662-79-C-0267

UNCLASSIFIED F/G 9/2

~] N L
'! ' L g28 B25
o sy i
E-.; ——— ".i? B -
- w Jag K
L £ e
I = 18
’ m“IZB ml4 .6
MICROCOPY RESOLUTION TEST CHART
NATIONSL BUREAU OF STANDARDS - 1983 - A
b,
!

DA el tet it

e
i

Lm0 ol o
e . . é

m Pr oL XS M KNAALAI | I:' Sl
p
A

v
f
.
}
[
4
]
!

P WY U A G S

B iR L e g A v L R) g T ——~ ——— CC et L TR T RTINS

PP LI _.__.J

s 7 T vy :
2 Maaey} :
. PLANR N
PR P

METRIC WORKSHEIT 2A
JESIGN/SYSTEM LEVEL

SYSTEM
NAME ;

YIII. TESTING (TESTABILITY) - APPLY TO TEST PLAN, PROCZDURES, RESULTS (CONTINUED) Ve

Number of interfaces to be tastad?
Number of itemized performance requi mr&i'

IN.2(1)

Number of performance requirements to be

testad? IN.2(2)

Number of moduies?
Number of modules to be

Are tast inputs and outduts

pravided in summary forg?,, YIN
IX DATA 3AsSe
Number of unique data items in data base SI.1(6) 2?4
Number of preset data items SI.1(6) (2
Nunber of major segments (files) in data base SI.1(7) 5

£ INSPECTCR'S COMMENTS

Maka any general or specific comments about the quality observed while applying this

checklist.

....................

:! A - oo o - —_— ,____a:_-.-____

- ¥ETRIC. WORKSHEET 7 SYSTEM NAME: 4]\1{1— oate: _L Julg 81 n
JESTGN/MOOULE LEVEL MODULE NAME: ﬂﬂﬁﬂ !] INSPECTOR: M :'l:: i

~I. COMPLETENESS (CORRECTNESS, RELIABILITY))

h {. Can you clearly distinguish inputs, outputs, and the function being performed? CP.1(1) “#"

2. How many data references are not defined, computad, or obtained from an external
source? CP.1(2) .

™ T ‘

)
s 3. Are all conditions and processing defined for each decision point? (CP.1(S) |
[4. How many problem reports have been recorded for this module? CP.1(7)
Profile of Problem Reports: =P 5. Camputational o
. 4. Number of problem reports still outstanding CP'I(7} 6. Logic ,
. II. PRECISION (RELIABILITY) 7. Input/Output g
3 1. When an error condition is detectad, is it

- passed to calling module? ET.1(3) 8. System/0S Support

2. Have numerical tachniques being used in algori-
thm been analyzed with regards to accuracy
requiresments? AY.1(4)

! 3. Are values of inputs range tested? ET.2(2)

q . Configuration

lo, Routine/Routine Inter-
* face

{1, Routine/System Inter-
face

= Are conflicting requests and 11legal combina- 12.. Tape Processing

tions fdentified and checked? €£T.2(3)

}@5@1}5

13, User Interface

5. Is there a check to see if all necsssary data Y
is available before processing begins? ET.2(5)

NP

|4, Oata Base Interface

\S, User Requested Changes

[s all input checked, reporting all errors,
before processing begins? ET.2(4) ‘ b, Preset Data

\7 Global Variable Defi-
nition

7. Are loop and multiple transfer index parameters | Y |8, Recurrent Errors

range tasted before use? ET.3(2)

(D

19, Oocumentation

[TTTTTTTTTTTTTT T eI RE

Y IN
8. Are sybscripts range tested before use? ET.3(3) 20, Requirement Compliance : :
9. Are outputs checked for reasonableness before <
processing continues? ET.3(4) Ly[ln)] 2! 0Operator ’
21 Questions
23, Hardware
‘ [II. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)
" 1. How many Decision Points are there? 3. Hew many conditional branches are (& [p
{_: SI.3 ‘ there? SI.3 —
b 2. How many subdecision Points are 4. row many unconditional branches ,6 A
X there? SI.3 are there? §i .3 —_—
b 1
b A-8
F’]
1

METRIC woRksHEET 2 B

SYSTEM NAME:

AT

Pg. 2

module? EE.1

DESIGN/MODULE LEVEL MODULE NAME: _AmSL_JL_

III. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY) (CONTINUED)

. [s the module dependent on the T 7. Are any limitations of the proces-
source of the input or the L sing performed by the module
destination of the output? SI. 1(1) i identified? EX.2(1)

6. [s the module dependent on know- 8. Number of entrances into ngguﬁg
ledge of prior processing? SI.1(3) * 1(5)

! 9. Number of exits from modulg
; ! 1.1(5)
IV. REFERENCES (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSABILITY,
INTEROPERABILLITY)

1. Number of references to system 8. s temporary storage shared with
1ibrary routines, utilities or other other modules? MD.2(7)
system provided facilities $S.1(1) /9/

9. Does the module mix input, out-
“2. Number of input/output act'lons _3 put and processing functions in
L1(2) same module? GE£.2(1)

3. Number of calling sequence paramters /

M3.2(3) 10. Number of machine: dependent

4. How many calling sequence parameters / functions performed? G£.2(2)
are control variables M3,2(3)

11. ls processing data volume limjted?

5. Is input passed as calling sequence .2(3)

. parameters MD.2(4) Y @ 12. s procassing data value Huﬂ?e??

‘8. s output pas?ec)i back to calling 13. Is a common, 1stanc!ar-r:l subsat of,
module? MO.2(S * programming language to be used?

@ N 9 s $5.1(2)

7. s control returned to calling @ N 14. 1Is the programming language
module MD.2(6) available in other machines?

{ MI.1(1)

Y. EXPANDABILITY (FLEXIBILITY)

1. s logical processing independent of storage specification? EX.1(})

2. Are accuracy, convergence, or timing attributes parametric? £ vf

3. [s module table driven? gx,2(2) HL

VI. OPTIMIZATION (EFFICIENCY)

1. Are specific performanca requirements (storage and rvntimg) allocated to this

——

i {

L

€Taic worksheer 28 svstem vawe: __ e T

JESIGN/MODULE LEVEL MODULE NAME : AMSPIT Pg. 3

OPTIMIZATION (EFFICIENCY) (CONTINUED)

Which cateqory does processing fall in: EE.2

1 Real-time

Ci onE -4 On-line
P 3 ; Time~-constrained
N’
4 Non-time critical
1. Are non-loop dependent functions kept out of loops? EE.2(1) Yeg
o
‘1. [s bit/byte packing/unpacking performed in loops? EE.2(5) Ne
3. s data indexed or reference efficiently? EE.3(5) "’QL
111. FUNCTIONAL CATEGORIZATION

Categorize function performed by this module according to following: Circle one below

1 CONTROL - an executive module whose prime- function {s to invoke agther modules.

2 INPUT/OUTPUT - a module whose prime functiom is to communicate data between
the computer and the user.

3 PRE/POSTPROCESSOR - a module whose prime function is to prepare data for or
after the invocation of a computation or data management
module.

4 ALGORITHM - a module whose prime function is computation.

DATA MANAGEMENT - a module whose prime function is to control the flaw of
data within the computer.

‘ SYSTEM - a module whose function 1s the scheduling of system resources for
other modules.

VIII. CONSISTENCY

Does the design representation comply with estabHshed standards CS.1(1)

0o input/output refersnces comply with established standards (S.1(3)

0o calling sequences comply with established standards CS.1(2)

s error handling done according to established standards CS.1(4) 6@

ire variable named according to astablished standards CS.2(2)

A-10

| grasm e s aune con e ba e pa et sad SIS ERAL A ahdy

PPN S

S
-.' -

-

€TRIC woRKSHEET 2} SYSTEM NAME: Aol
JESIGN/MODULE LEVEL MODULE NAME: Mﬂ' Pg. 4

IX. INSPECTOR'S COMPENTS

Make any specific or general comments about. the quality observed while applying this
checklist?

T‘_A.-rvv —

———— T
.
a

g g do b -~

A-N

'ETRIC WORKSHEET 2
30URCE. CODE/MOOULE LEVEL

STSTEM NAME:

AT it Lol 8
MOOULE NAME: M INSPECTOR: .

STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)

{.
+. Number of lines of code M0.2(2) 11. Number of sub-decision po;rgtg Z
2. Number of lines excluding comments 12. Number of conditional brand:!es 3
$I.4(2) - (computed go to) SI.4(8) o
3. Number of machine level Tanguage Z 13. Number of unconditional branches Q
statements $D.3(1) (GOTQ, ESCAPE) SI.4(9)
4. Number of declarative statements r7 |14, Number of Toops (WHILE, 0Q) 2
SI.4 SI.4(3) —
5. Number of data manipulation state- Q 15. Number of loops with jumos out of | {
ments SI.4 1aop (3)
§. Number of statement labels sr q4(g)| / |16. Number of loop indicies that are 74
(0o not count format statmntss modified SI.4(4)
7. Number of entrances into module / 17. Number of constructs that perform -Z
SI.1(5) module modification (SWITCH,
8. Number of exits from module / ALTER) SI.4(S)
SI.1(5) 18. Number of negative or comnlicated
9. Maximum nesting level SI,4(7) Z compound boolean expressigr;s (2)
0. Number of decision paints Y 19. s a structured lanquage g.;»eé l
(IF, WHILE, REPEAT, D0, CASE) SI.3 20. Is flow top to bottom (are there
any backward branching GOTOs)SIA(T
[I. CONCISENESS (MAINTAINABILITY) - SEE SUPPLEMENT
Number of cperators ©0.1) 1 3. Number of Operands CO.T /
2. Number of unique operatars (0.1 { 4. Number of unique operands (0.1 /
[II. SELF-DESCRIPTIVENESS (MAINTAINABILITY, FLEXIBILITY, TESTABILITY, PORTABILITY, REUSABILIT
1. Number of lines of comments SO0.1 401 7. Are non-standard HOL statements
" o commented? S$0.2(5)
2. Number of non-blank Tines of comments
0.1 lgé-— ,‘
3. Are there prologue comments provided 8. How many declared variables are
containing information about the not described by comments?
function, author, version nymber, — 50.2(6)
date, fnputs, outputs, assumptions N
and lTimitations? Sv2(v) 9. Are variable names (rmemonics)
4. [s there a comment which indicates descriptive of the physical or
what itemized requirement is functional property they fD
satisfied by this module? SM(‘\T Y /N» represent? S0.3(2 <,
TR\ 10. Do the comments do more than
§. How many decision pgints and trans- repeat the operation? S50.2(7)
fers of control are not commented? (ﬁ
$0.2(3)
11. [s the code logicaily blocked and
6. Is all machine language code com- indented? S0.3(3) -
mentad? $0.2(4) % ‘z
1 12. Number of lines with more than
1 statemr~t. SD.3(4) &
11 Utimmar ¢ ~andimn araAn limrae ﬁ
A-12

- o

@

P -

~.

T T T YT
. P N

: TY""’T Oy
NAERES B
S .

Lok SR pin s e ot am g

T ———

AN SR A SR

VETRIC WORKSHEET 3 SYSTEM NAME: AT o
5QURCE CODE MODULE LEVEL | MODULE NAME: AMSPUT 9.
Iv. [INPUT/QUTPUT (RELIABILITY, FLEXIBILITY, PORTABILITY)
I'. Number of input statements MI.1(2) Z 4, Are inpu::s rat;?g-tested {for
‘ inputs via calling sequences,
2. Number of output statements MI.1(2) [13 global dat?r, E_t‘:dzz'gyut Y])
statements .
3. [s amount of input that can be S. Are possible conflicts or Hlega]
handled parametric? GE.2(3) z@ combinations in inputs checked? - ?
' ET.2(3)
6. [s there a check to determine if)
all data is available prior to
processing? ET.2(5) YZ Il
J. REFERENCES (RELIABILITY, MAINTAINABILITY. TESTABILITY. FLEXIBILITY. PORTABILITY, REUSABILI
. Number of calls to gther m%”;?” A | 6. How mny parameters passed ta or 174
2. Number of refarences ta system ‘;‘;“‘:,,‘,?’;";;d'.‘,‘?i':'*,’o‘;‘(’ 3')‘“ defined =
library routines, utilities, or : .
other system provided f""“gg"]s(” 7. Is input data passed as parameter? Y<'|
3. Number of calling sequence parazne)ters / M0.2(4)
MO.2(3
4. How many elements in calling ,
sequences are not parameters? 8. Is output data passed back to G Eill
M0.2(3) (2' calling module? M).2(5)
3. How many of the calling parameters QZ
(input) are control variables? 9. s control returned to calling
M0.2(3) module? M0.2(6)
Y1. OATA (CORRECTNESS, RELIABILITY, MAINTAINABILITY, TESTABILITY)
1. Number of local variables SI.4(10) / 4. How many global variables are not &
used consistantly with respect to
2. Number of global variables SI.4(10) | | O units or type? (CS.2(4)
3. Number of global variables renamed z 5. How many variables are used for |-
sy SE.1(3) more than one purpose? (S.2(3) +—
VII. ERROR HANOLING - (RELIABILITY) VIII. (EFFICIENCY)
1. How many loop and multiple transfer Z “1. Number of mix mode expr'eSESEiO;(S;’) k
index parameters are not range .
'estedpbef re yse? ET°3"‘ 3 2. How many variables are initializedl
’ ore d +3(2) when declared? EE.3(2) ——
v T enendent seatemens in them?ge. a1
o 4. How many loops have bit/byte Z
.. When an error condition occurs, is it packing/unpacking? EE.2(S)
passed to the calling module? ET.1(3)f YA N SE.1(6)
4. Are the results of a computation A 5. How many compound expressions 4?
checked zefare outsutiing or before = defined more than once? E£E.2(3) —
A-13

m e Al s a a m

E P UL A N S S s

~

L
O
i ;-'_:'hh.l:
ETRIC WORKSHEET 5 SYSTEM NAME: AT e
QURCE CODE/MODULE LEVEL | MODULE NAYE: _ AMSPUT Pg. 3 “-
: X. PORTABILITY X. FLEXIBILITY] Coe
g Is code independent of word and 1. Is module table driven £X.2(2) "(: :
% character size? MI.1(3) g ‘
- C Y)N | 2. Are there any limits to data L
1 values that can be processed? v..';.ﬂ
‘ Number of lines of machine language GE.2(4) (Yy
¢ statements. MIL.1 -%
Is data representation machine 3. Are there any limits to amounts
. independent? MIL.1(4) of data that can be processad?
DL e€.2(3 e
L] . [s data access/storage systam soft- 4. Are accuracy, convergence and i ‘_’,k' |
ware independent? SS.1 timing attributes parametnc" o
E; N £X.2(1) : ot
§ 'I. DYNAMIC MEASUREMENTS (EFFICIENCY, RELIABILITY) R
. S
- During execution are outputs within accuracy tolerances? AY, 1(5) Y :
2. Ourin module/development testing, what wag run time? €X.2(3) A “
2 7. What was budeeted run +fime ! i]
& Complete memory map for execution of this module SE 1(4) R
5 Size (words of memory) NP
:‘ P . :_':.
3 4, APPLICATION s
‘F s, SYSTEM »
5 7. | omer i3
— T
g. Ouring execution how many data itams were referenced but not modified EE. 3(6) ‘1’
] em—
1 9. Ouring execution how many data itams were modified EE.3(7) e
5 XI1. INSPECTORS COMMENTS
:? Make any general or specific comments that relate to the quality observed by you while
L.\ applying this checklist: 'fi
g R
{ S
-
A-14 .
.

S e
":d e e
4

WORKSHEET REPORT

The worksheet report displays the raw data entered in each worksheet. It
represents the current values in the data base. It is used to verify and
track data entry.

AUTOMATED MEASUREMENT TOOL
WORKSHEET REPORT
WORKSHEET 3

DATA Base Amtexs

MODULE: EXSGET DATE: 12/23/81 v,
: I. STRUCTURE (RELIABILITY, MAINTAINABILITY, TESTABILITY)
: 1. NUMBER OF LINES OF CODE 95, -
] 2. NUMBER OF LINES EXCLUDING COMMENTS a7. e
‘ 3. NUMBER OF MACHINE LEVEL LANGUAGE STATEMENTS 0. v
: 4. NUMBER OF DECLARATIVE STATEMENTS a. o
c 5. NUMBER OF DATA MANIPULATION STATEMENTS 5. o
: 6. NUMBER OF STATEMENT LABELS (EXCLUDING FORMAT STATEMENTS 0.
7. NUMBER OF ENTRANCES INTO MODULE 1. St
ENTER [CR] TO CONTINUE ‘E' TO EXIT: iy
S e d
8. NUMBER OF EXISTS FROM MODULE 2. R
9. MAXIMUM NESTING LEVEL 3. s
10. NUMBER OF DECISION POINTS (IF, WHILE, REPEAT, DO, CASE) 10.
11. NUMBER OF SUB-DECISION POINTS 0. o
12 NUMBER OF CONDITIONAL BRANCHES (COMPUTED TO GO 6. e
13. NUMBER OF UNCONDITIONAL BRANCHES (GOTO, ESCAPE) 0. _
14. NUMBER OF LOOPS (WHILE, DO) 4,
15. NUMBER OF LOOPS WITH JUMPS OUT OF LOOPS 0.
16. NUMBER OF LOOPS INDICIES THAT ARE MODIFIED 0. -
17. NUMBER OF MODULE MODIFICATIONS (SWITH, ALTER) 0. e
18. NUMBER OF NEGATIVE OR COMPLICATED COMPOUND BOOLEAN EXPRESSIONS O, *
19. IS A STRUCTURED LANGUAGE USED? YES ‘
20. IS FLOW TOP TO BOTTOM (ABSENSE OF BACKWARD BRANCHING GOTO's)? YES
I1. CONCISENESS (MAINTAINABILITY) .
1. NUMBER OF OPERATORS a, Y
2. NUMBER OF UNIQUE OPERATORS 1. T
3. NUMBER OF OPERANDS 8. Co
a. NUMBER OF UNIQUE OPERANDS 3. e
ENTER (CR) TO CONTINUE, 'E' TO EXIT: .
N
A-15 ;
L
T

EXCEPTION REPORT

The exception report delivers the relationship of each module to a given
threshold value of a particular metric. The relationship (less than, equal

to, or greater then) and the threshold value is input from the user. This ﬁﬂf;f
report can be used to identify modules whose scores do not meet a certain ihfjl
threshold, identifying them as potential problems. ;.glf
- .»Q
E}i AUTOMATED MEASUREMENT TOOL S
8 EXCEPTIONS REPORT c
\
S DATABASE: AMTEXS DATE: 12/23/81
- METRIC: ET. 2 -
M PHASE: MODULE IMPLEMENTATION L
] THRESHOLD VALUE: 0.65
3 RELATION: LESS THAN
' THE FOLLOWING MODULES ARE WITHIN RANGE REQUESTED L] 1
MODULE NAME VALUE
EXSCEX 0. ® !
8 EXCDLP 0.500 2
5 EXSDBG 0.333 w)
2 EXSHLP 0.
i EXSPGR 0. ®
™ by
] EXSUPK 0.]
S :
. -]
; v
g ™
- X
3 "y
g)
3 ..
4 A-16
g)
- — T e -
-" '.. T o . 1
S, 1
- T o
| PR A T LR I S ; -~ " -

NORMALIZATION REPORT

The Normaiization Report provides the user with the overall rating of

PORTABILITY = 2,154

'IF;

selected quality factor. A series of regression equations are displayed whict o
have been empirically derived from research. The current metric values are L
substituted in the equations and a rating for the selected quality factor is SR
calculated. Regression, equations exist for the quality factors reliability, f;‘ ;
maintainability, portability, and flexibility only: .
AUTOMATED MEASUREMENT TOOL 72~j
NORMALIZATION FUNCTION REPORT " 4
;
DATABASE: AMTEXS .
MODULE: EXSGET DATE: 12/23/81 '.;
- .
DESIGN NORMALIZATION FUNCTION IMPLEMENTATION NORMALIZATION FUNCTION ‘1'<f
e
FACTOR: PORTABILITY S
NO DESIGN NORMALIZATION FUNCTION PORTABILITY = 1.7 + .19 (SD.1) + ;‘57
FOR PORTABILITY FACTOR .76(SD.2) + 2.5(SD.3) + .64(MI.1) jf" é
SD.1 = 0.426 ,,f 1
SD.2 = 0.857]
$0.3 = 1.000 »
MI.1 = 0.972 e
N

.“7_"'{ AN .

i -

T~y -

T T ——— SR Mate Must MRl AR SR - aras A A A AR e 200t et B ka1 T Y Y T

METRIC REPORT

This report calculates the value of each metric catagorized by factor and by
development phase. This report is used to determine a total picture of the
project as measurements are taken.

AUTOMATED MEASUREMENT TOOL
METRIC REPORT/MODULE IMPLEMENTATION PHASE

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81
FACTOR CRITERIA METRIC VALUE
CORRECTNESS Traceability TR.1 1.000
Completeness cP. 0.667
Consistency/Procedure cs.1 1.000
Consistency/Data €S.2 0.500
RELIABILITY Consistency/Procedure CS.1 1.000
Consistency/Data CS.2 0.500
Accuracy AY.1 1.000
Error Tolerance/Contro) ET.1 1.000
Error Tolerance/Input Data ET.2 1.000
Error Tol./Computational Fail. ET.3 0.
Design Structure SI.1 0.625
Complexity SI.3 0.100
Code Simplicity SI.4 0.722
MAINTAINABILITY Consistency/procedure CS.1 1.000
Consistency/Data €s.2 0.500
Design Structure SI.1 0.625
Compiexity SI.3 0.100
Code Simplicity S1.4 0.722
Modular Implementation MO.2 0.750
Quantity of Comments SD.1 0.426
Effectiveness of Comments SD.2 0.857
Conciseness C0.1 1.000
TESTABILITY Design Structure SI. 0.625
Complexity SI.3 0.100
Code Simplicity SI.4 0.722
Modular Implementation MO.2 0.750
Quantity of Comments SD.1 0.426
Effectiveness of Comments SD.2 0.857
Descriptiveness of Impl. Lang. SD.3 1.000
PORTABILITY Modular Implementation M0.2 0.750
Quantity of Comments SD.1 0.426
A-18

-' - g

PP PUPY |

I PENNY WY VY

T

PP Uy S T P)

g

- FACTOR

(4
REUSABILITY
FLEXIBILITY
INTEROPERABILITY
EFFICIENCY

CRITERIA

Effectiveness of Comments
Descriptiveness of Impl. Lang.
System Software/Independence
Machine Independence

Modular Implementation
Generality/Implementation
Quantity of Comments
Effectiveness of Comments
Descriptiveness of Impl. Lang.
System Software/Independence
Machine Independence

Modular Implementation
Generality/Implementation
Data Storage Expansion
Computational Extensibility
Quantity of Comments
Effectiveness of Comments
Descriptiveness of Impl Lang.

Modular Implementation

Iterative Processing
Data Usage

A-19

METRIC

SD.2
S0.3
$S.1
MI.1

MO.2
GE.?2
SD.1
SD.2
SD.3
SS.1
MI.1

MO.2
GE.2
EX.1
EX.2
S0.1
Sb.2
SD.3

EE.2
EE.3

VALUE

0.857
1.000
0.500
0.972

0.750
0.750
0.426
0.857
1.000
0.500
0.972

0.750
0.750
0.

0.500
0.426
0.857
1.000

0.750

1.000
0.668

oY

S

-

T v
-

TT o It RN
R A

RGLAR IR S IR 4 S sn SNt

T

STATISTICS REPORT

The Statistics Report provides a profile of COBOL constructs for each module.

AUTOMATED MEASUREMENT TOOL
STATISTICS REPORT

DATABASE: AMTEXS

MODULE: EXSGET DATE: 12/23/81
NUMBER OF LINES OF CODE 95.
NUMBER OF PERFORM STATEMENTS 4,
NUMBER OF EXTERNAL CALLS 0.
NUMBER OF EXECUTABLE STATEMENTS (PROCECURE DIVISION) 43.
NUMBER OF COMMENTS 48.
NUMBER OF DECLARATIONS (DATA DIVISION) 4.
NUMBER OF LABELS 0.
NUMBER OF I/0 REFERENCES 6.
NUMBER OF REDEFINES (EQUIVALENTS) 0.
NUMBER OF LEVEL 88 DATA ITEMS (LOCAL VARIABLES) 1.
A-20

;" 4

- . Ve
PRI P PR

PSP RERY

S e Sotn “ete aees SaathZ

SUMMARY REPORT

The summary report provides a summary of the metric scores for all of the
modules in the system.

AUTOMATED MEASUREMENT TOOL
METRIC SUMMARY REPORT

DATABASE: AMTEXS
MODULE: EXSGET

AY.1 = 1.000 €0.1 = 1.000 CP.1 = 0.667 CS.1 = 1.000
€s.2 = 0.500 EE.2 = 1.000 EE.3 = 0.668 ET.1 = 1.000
ET.2 = 1.000 ET.3 = 0. EX.1 = 0. EX.2 = 0.500
GE.2 = 0.750 MI.1 = 0.972 M0.2 = 0.750 SD.1 = 0.426
$D.2 = 0.857 $D.3 = 1.000 SI.1 = 0.625 SI.3 = 0.100
SI.4 = 0.722 $S.1 = 0.500 TR.1 = 1.000

A-21

DA oA e

8 QUALITY GROWTH REPORT

When the user wishes to track the value of a particular metric over time, the
Quality Growth Report will furnish a tabular display of the scores of a
selected metric over the plhases of the project. This report is used to track
a particular metric through a project to see how its value changes.

AUTOMATED MEASUREMENT TOOL
QUALITY GROWTH REPORT

‘R acaan)

DATABASE: AMTEXS

3 MODULE: EXSGET DATE: 12/23/81
' METRIC DETAILED MODULE

g DESIGN IMPLEMENTATION

L

- ET.2 0.750 1.000

R o
.

L ;
"]
g o
.. <
o]
3
S
5
F)
f‘ a
%ﬁ, X
{ L
ﬁ'. "»'-4
4 -
{
A-22 1
F)

— Vv

Y

MATRIX REPORT

This report displays the average and standard deviations for all metric values

modules.

This report displays all of this information in a matrix form

allowing the user to easily identify modules with metric scores that vary from

the system average.

DATABASE: AMTEXS
PAGE = 1

MODULE NAME

EXSCEX
EXSCHK
EXSCLP
EXSDBG
EXSGET
EXSHLP
EXSPGR
EXSQRY
EXSSSM
EXSUPK

AVERAGE =
STANDARD DEVIATION =

AUTOMATED MEASUREMENT TOOL
MATRIX REPORT

AY.1

0.
1.000
1.000
0.
1.000

0.300
0.438

co.1

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.900
0.316

cpP.1

0.

0.667
0.667
0.

0.667
0.833
1.000
0.667
1.000
0.625

0.550
0.401

A-23

Cs.1

1.000
1.000
0.

1.000
1.000
1.000
1.000
1.000
1.000

0.700
0.483

DATE:

cs.2

0.

0.500
0.500
0.

0.500
0.500
0.500
0.500
0.500
0.500

0.350
0.242

12/23/81

EE.2

1.000
1.000
1.000
0.
1 000
0.
1.000
0.
0.
1.000

0.500
0.527

]

-l

Y TY T vy

R

0~ 28

Cadeaie 67 S e, son - DR S g - v _— v T—

MODULE REPORT

This report displays the catalog of modules that have been entered into the

database. It providss a status report on the database.

AUTOMATED MEASUREMENT TOOL
MODULES REPORT

DATABASE: AMTEXS DATE: 12/23/81

WS1 CHONTAINS SOME NIL VALUES
WS2A CONTAINS SOME NIL VALUES

THE FOLLOWING MODULES ARE PRESENTLY IN THE CURRENT DATABASE:

1. EXSCEX ** 2. EXSCHK *
3. EXSCLP * 4, EXSDBG **
5. EXSGET * 6. EXSHLP *
7. EXSPGR * 8. EXSQRY *
9. EXSSSM * 10. EXSUPK *

TOTAL NUMBER OF MODULES IN DATABASE IS 10.

NOTE: * INDICATES BOTH WS2B AND WS3 CONTAIN SOME NIL VALUES.
NOTE: ** INDICATES WS2B CONTAINS SOME NIL VALUES.

A-24

PR S NP P NP S S P ' s
P

I S

L. N -
. B ,
PRV A T Y P Y POV S Y Py

1 -
d

Y PN U ENrY Y P T IR Y

v—v—ry T 3
LRI A
Lo . A

———

e

LA A s i IR R

Lo o oom e smme e agie et

APPENDIX B
CONVERSION OF AMT
FROM VAX 11/780 TO

HONEYWELL 6000

M e

N e o ar)
Ao

,vﬁngww v
T . o L

SECTION B-1
INTRODUCTION

When designing the AMT (Automated Measurement Tool), the portability of the
IFTRAN source code was a major consideration. The AMT contract stipulated
that a fully running version of the AMT be delivered on the Honeywell 6000
series computer (GCOS operating system) located at RADC (the Rome Air
Development Center, Griffiss Air Force Base, New York). In order to provide
us with more efficient computer access, it was decided to develop the software
on a VAX 11/780 computer, at our General Electric Facility in Sunnyvale,
California and then ship a tape containing the source code to RADC, Therefore,
the VAX version had to be implemented in very standard code using system
dependent functions only when absolutely necessary. Whichever system
dependent functions were used would be modified after the code had been moved
to the Honeywell. This appendix describes the coding techniques used to
assure the AMT code was kept as system independent as possible and the
differences between the VAX and Honeywell system dependent functions.

B-2

PN SR VU Sy T P P R S W

-y

Y-

AT R S e - S M-S S SR d L e TR

SECTION B-2
CODING STANDARDS

Table B2-1 describes the standards established. Table B2-2 identifies the
» differences in the system dependent functions between the two computer
: environments.
:; Table B2-1 Code Standardization
g
\ 1.. Only INTEGER and REAL data types used.
2. No INTEGER*n data types used.
8
3. No LOGICAL data types used.
4, No CHARACTER or CHARACTER*n jata types used.
5. Character strings are stored in integer arrays, one character per
array element. Unused array elements are filled with blanks.
6. Input/Output of "character" arrays is performed with the implied DO in
combination with the alphanumeric (A) field Format descriptor.
Example: WRITE(CRT,100)(DBNAME(I), I=1, 15)
100 FORMAT ('DATABASE NAME' , 15A1)
7. System dependent functions (mainly file handling functions) are

isolated into subroutines. This way, modifications to those functions
need only be made in one place.

B-3

PUSDPLD SPUT |

PRy O

-——h USRI R T SO W SN Y e

s a T ata e e m e e e e reoremeemen v e Do Bt Mo e b Mo s s Sanem s s Bl

2.

Table B2-2 System Dependent Function Differences

Creating Files
A

OPEN (UNIT = n, NAME = filename, TYPE = 'NEW')

VAX FORTRAN allows filename to be an integer array, which is the
way AMT stores character strings.

H6000

CALL CALLSS (“ACCESS CF, filename, size, type")
or

CALL CALLSS (string)

where string = “ACCESS CF, filename, size, type"

Honeywell FORTRAN has no direct method for creating files. The CALLSS
routine allows any timeshare command to be given from an executing FORTRAN
program (the timeshare command being a character string enclosed in
quotes). In this case, the ACCESS subsystem is called to create a new
file. Note that AMT stores filenames in integer arrays. Therefore, in
order to call CALLSS, each character stored in the filename integer array
must first be concatenated into the timeshare command character string.
Concatenation is performed by the Honeywell CONCAT routine.

Opening Files
ALY

OPEN (UNIT = n, NAME = filename)

B-4

_,.“ d

L 3

[GRS

R ST WA YU T N ee ST Y] B PV d R N I P

FPOT

1

- TCTTYY '1"771

‘ P — — T Ty
T aaan e ettt M st it - T - oL

Table B2-2 System Dependent Function Differences (Cont.)

H6000
CALL ATTACH (unit, “filename;", etc.)

Note that filename must be a character string. Each character
stored in an AMT filename integer array must first be
concatenated into the filename character string. Also note that
the filename character string must be terminated by a semicolon.

Closing Files
AX

CLOSE (UNIT = n, DISPOSE = 'SAVE')

H6000
CALL DETACH (unit, etc.)

Determing if a File Currently Exists
VAX

CALL LOOK (unit, filename, blocks, return code)

After calling LOOK:

IF return code = 0, the file exists.

IF return code = 1, the file exists, but is currently open.
Any other return code, the file does not exist.

H6000
CALL ATTACH (unit, filename, status, etc.)
(See Opening Files)

After calling ATTACH:
If status = octal (4000 0000 0000) or
octal (4004 0000 0000)

the file exists.
IF status = octal (4037 0000 0000)

B-5

[) N P T Y A“AA\;Y___‘.»L‘A“—,—-‘;JLL“—_—AT___L_

POV PR)

——

Table B2-2 System Dependent Function Differences (Cont.) S
L
the file exists, but is ¢urrently open. L)
Any other status
L
the file does not exist. ‘¥
5. Opening Random Access Files 73]
: vAx o
{‘ OPEN normally w3
3 H6000
-E Before accessing random files a call to RANSIZ must be made to : "jf"ij
t'! specify the record size of the file. The file is then opened iy J
normally. “on
6. Suppressing Carriage Return and Line Feed
p VA v
:;; End FORMAT statement with dollar signfield descriptor. The cursor 1
2 will remain positioned at its current location for the next write. 3
; FORMAT (5X, 15A1, $) s
:
3 H6000]
% Place an ampersand as the first print character in FORMAT statement. _7-;'?‘:
3 The write will begin where the cursor was previously positioned.
g FORMAT (‘&', F6.2) ’
2 7. PROGRAM Statement 5
VAX 4
L Allows the PROGRAM statement as the first line of a FORTRAN program. ’
¢ e
- ‘j:IT-
- H6000 o
S Does not recognize the PROGRAM statement. =
: ;-
g
- B-6
Fe \

SECTION B-3
VAX TO H6000 TRANSFER TAPE

i: Copying Files from the VAX to the Transfer Tape (see also Section B-4).

1.

Y

A

Crare S b S0

9.

1.

2.

Create a file named TRANSFER.LST. Enter into TRANSFER.LST the name
of each file to be transferred (one filename per line).

$ ALLOCATE MTAn:

Physically mount tape on drive #n.

$ INITIALIZE/DENSITY=1600 MTAn: label

$ MOUNT/DENSITY=1600/FOREIGN/BLOCK=80 MTAn: label

$ RUN TAPE2

- When prompted for the output file name enter MTAn:
(where n = number of tape drive allocated)

- When prompted for the VAX file list enter TRANSFER,.LST

- At the end of its execution TAPE2 will display the message ALL
FILES COPIED

$ DISMOUNT MTAn:

Physically remove the tape.

$ DEALLOCATE MTAn:
The tape is now ready to be sent to RADC.

Reading the VAX Tape on RADC's H6000 (see also Section B-6)

Obtain the RADC tape number assigned to the transfer tape.

Edit file /AMTS/TRANSLATE/TMP, substituting the new tape number 1in
the TAPE9 IN card.

B-7

PR S B L IR

[. . e e e T R — S . AP o PP Py

{-1~-~ T —— ——— - - T T e —s e —————— - ——y -

3. Create a sequential file named /AMTS/VAXDATA of maximum size 1000.
The transfer tape will be written to this file.

F 5
; 4. *CARDIN :
1 .
5. *RUN /AMTS/TRANSLATE/TMP 3
5 .
‘ 6. When the job has finished running: o
E *CONVERT /AMTS/VAXDATA = *:TRAIL ~
;1 7. *RESAVE /AMTS/VAXDATA ..j
t /MAMTS/VAXDATA now contains the information that was stored on o
. the transfer tape. .
T .

L4

(] k
- . 4
! o
<Y
b‘ :":.4
y - » i
.- - ,‘*
[4
3
|
2

oY |

B-8

SECTION B-4
VAX LISTINGS

L‘ 1. Listing of VAX FiYe TRANSFER,LST.

100 EXSCEX.IFT
200 EXSDBG.IFT
E 300 RGSCMM.IFT
i 400 UTLCRE.IFT
L
\

B-9

APPENDIX C
DBMS SURVEY

C-1

TN TN T W T Y, [ediin Sins Shou Sl Y

.........

Fr-rﬂ FaE 2 o e o [" ”

VT

Mamam s e ag o0

-t -

e AL Aol it . BECEAE AU A A ot O S e AU U N AR el Sl A A - = -~y

_ ‘.,4

SECTION C-1]

PURPOSE :

One of the reguirements of the contract was to attempt to utilize a DBMS 1in e

our system design. It was anticipated that the use of a DBMS would increase
the portability of the system as well as reduce the required effort to develop
the system., Because these assumptions did not hold true for MDQS, the DBMS on .
the H6000/GCOS target environment, a DBMS survey was conducted. K

Section 2 discusses the problems of using MDQS. It states why the initial T
version of the AMT will have to be implemented with its own built-in data -
management functions. N I

Section 3 examines the utility of using alternative DBMS's deemed most likely
to be available in target environments. These DBMS's were examined and
compared according to certain criteria. o

dedbd

C-2

Y e ——) i am "

r

SECTION C-2
THE PROBLEMS OF USING MDQS

The use of a DBMS was initially considered to be a good design choice.
Storage and retrieval of the metric data could be performed by the DBMS. It
has turned out that the Honeywell provided DBMS, MDQS, {s inappropriate for
the AMT application. Thus, while DBMS's in general could be considered for
other versions of AMT, the initial version on the RADC H6180/GCOS system will
have to be implemented with its own built-in data management functions.

The two major reasons for not using MDQS are: (1) we would not be able to use
any of our existing software, and (2) the system would not be transportable.
MDQS is a completely self-contained DBMS. It was developed strictly for
business applications in which data is simply stored and retrieved with a
minor amount of manipulation. The manipulation is done by internal procedures
written using MDQS - provided constructs. Thus, all of AMT would have to be
implemented within the framework of MDQS. This is practically impossible
considering the complexity of the parsing and measuring algorithms that are
part of AMT. In addition, none of the existing code that performs the parsing
function (approximately 2000 lines of code) could be used.

More importantly, if the AMT was developed under the framework of MDQS it
would have to be totally converted. This conversion would be necessary either
for interfacing with another DBMS of for running on another system.
Constrainment of the portability of this prototype software development is
unacceptable. The trade-offs of using or not using MDQS are summarized below:

Using MDQS: Advantages

0 Query capability
o Data management routines provided

c-3

Raad

o aaaeea o d

v

P - - - - 0 T TR TTRTTRTES TR TR . W R TR e N e VL W T W e T W G A T w e v N Do N it A A A st e, St A S

Disadvantages
o Resulting system not portable to 370 or 11/70
e No existing software could be used.

Because of the net unfavorability of using MDQS, our approach has been to
develop some very basic data management functions based on a data base
specifications. These data management function provide the core functions of
a DBMS. The system dependencies are isolated in a few of these routines.
They will have to be re-written when the system is transported to another
system. This is a significant improvement in the degree of portability of the
system,

c-4

-'d

NPV DR

-1

i Sa0t i oo aui aan

- ..

f
&

Py

-a s . A N Al e alaim i a #aan e mdam s s a

A m 4 - % a_a .

SECTION C-3
ALTERNATIVE DBMS'S FOR CONSIDERATION IN FUTURE AMT VERSIONS

In order to examine the utility of alternative DBMS's, we did a survey. Table
C3-1 gives an overview of the DBMS's we considered which have the facilities
to run on the target environments hardware and operating systems. Tables C3-2
through C3-7 include a detailed analysis of only those DBMS's thought likely
to best fit the target environments on overall criteria. MDQS is also
included. Of these latter DBMS's only the following are capable of being
called from FORTRAN:

TOTAL
IDMS
MRDS
MRI

Accordingly, selection from this subset of four DBMS's would contribute the
most portabiltiy to future AMT versions in the target environments, all other
things being equal.

C-5

L n
o e g

PP S S Y

PUSOT RS

&

Y N

Table C3-1
Data Base Management Systems

I. IBM 370/0S

A. Self-Contained Systems

1.

ARAP-Data Retrieval System
(1BM 370/115 and up, 0S/VS1, 0S/VS2. Interfaces with
0S Telecomm subroutines.)

Computer Corporation of America - Model 204
(IBM 370 under OS/MFT, OS/MVT).

Infodata Systems Inc. - INQUIRE
(1BM 370 interfaces with 0S)

Mathematica Inc. - RAMIS

(1BM 370 under 0S. Uses 0S facilities for 1/0, but

relies on no other system, Dependent utlities. Dependent
utilities, contains own sort logarithm. TP and Timesharing
interfaces are available).

Meade Technology Corp. - DATA/CENTRAL

(IBM 370, Model 40/135 up. Operates under all versions of
0S including virtual. Implementation on new machine re-
quires 12-18 months).

MRI Systems Corporation - SYSTEM 2000
(I8M 370 0S VvM/CMS, 0S/1100).

National CSS- NOMAD
(IBM 370 0S)

TRW OIM I1
(IBM 370 0S/VS)

B. CODASYL - Type Systems

1.

2.

Cullinane Corporation - IDMS
(1BM 370, all operating systems)

International Data Base Systems - SEED
(Written in FORTRAN so it may be used on any machine
with a FORTRAN computer. CPU's include IBM 370).

C. HOL - Based Non - CODASYL SYSTEMS

1.

Cincom Systems, Inc. - TOTAL
(18M 370 0S)

PR L

- - - T e T K T w R W
T T T T ” (R S-S RC R e i me) A

b 2. IBM Corporations - IMS

>': (IBM/VS runs on System 370 models 138, 145, 148, 15511, 158,
C 16511, 168 and 3033, 0S/VS1 and 0S/VS2).

3. Insyte Data Corp. - DATA COM/DB
(18M 370, 0S)

4., Software Ag - ADABAS
(I1BM 370, 0S MVT)

I1. Honeywell 6180/GCOS

A. Self - Contained Systems
] [MDQS

h B. CODASYL - TYPE Systems

1. Honeywell information Systems IDS II _
(Honeywell L6, L64, and 6000/L66 systems operating under GCOS
batch or communications environment).

C. HOL - Based NON - CODASYL Systems

PPy

1. Cincom Systems, Inc. TOTAL
(Honeywell Level 62 GCOS; Level 66/6000 GCOS)
II1I. Honeywell 6180/MULTICS

A. Self - Contained

1. Honeywell Multics Relational Data Store - MRDS
(HIS Series 60/Level 68 Hardware).

IV. POP 11/70 UNIX

A. Self - Contained Systems

1. Bell LABS - INGRESS
(POP 11/70; UNIX)

B. CODSDYL - TYPE Systems
1. Cullinane Corporation - IDMS -11
(similar to IDMS; see IDMS chart)
(POP 11/70; IAS

c-7

.) .
1 @ :
fhad 22 e

L_‘_A_L_A 4

LIl I M et il aiis S

T TN T T T T T . T T T e R N e TR T A T a— . T e T T

Techniques

" B
Table C3-2 B
MRI b
e
FUNCTION PROPERTY l PARAMETIRS
1. DATA 3ASE A, Item Self-contained DOL. Items defined in terms of unique : »i
DEFINITION Description name and number. Names up t0 250 cnarac:ers in leng:n.
Data Types: integer, cecimal, cnaracter, tex:, data. ’
money, VYariable lengtn character and text fielas uo N A
to 250 characters long. Any numper of user-specified {
indexed fields.
8. Logical Tree structure. Data Base Definition allows 32 levels
Structure of Schema records containing schema items to model
entries of data records containing data items. Data
Bases may be linked using HOL fnterface to form logical 1
networks. N
C. Physical | o
Structure Each data base is a stand-alone eatity, comprised of 3
separate physical files for schema, data, structures,
and indexes. Data stored in user-aetermined fixed- .
length blocks in physical hierarcnies system does C
own deblocking, File inversion on selected fields.)
' 4
D. Access 1 BOAM, BSAM, BPAM, QSAM. P
Methods ')
£. Special Storage | Alphanumeric fields are variabie length within ﬁii,

fixed Tength logical record via separate Extended e
Field Table. Hierarchical structure is used to L
eliminate data redundancy. A variety of storage
techniques (ring, tree, dense 1is%t, etc.) are used
to optimize specific DBMS processes.

iI. OATA 8ASE
CREATION

AND

11 REVISION

Initial data load may be run as a one time, incre-
mental or transaction processing procedurs, This
loading can be accompiished with any combination
of Programming Language Extansion, Self-Containe
Language and/or Self-Contained Utiiity.

Schema may be modified using self-cantained - 9
language. System automatically performs any internal
restructuring required,

L

31 JATA

MANI?

A
TION|

Selection
Level

Selection is at the ftem level. Items may be
ident{fied by schema name or alias.

PP W S

Operators,
Comparators,
Logical
Compiexity

Yariety of CML'S: PLEX, SCL, . Ccmprenensive ’

selection capability in ali OML's, Uses 2oolezn, =1
Threshold, indexed/non-indexed, text search and -
sositional tecaniques. Local and 3lcbai updates .
i with dynamic reuse of deietesd space. :CU supperss ’
[virtual data items, 1

PR

Table C3-2

MRI (cont.)

! FUNCTION PROPERT?

PARAMETERS

v

4

C. Reporting

T T el T]

Self-Contained Languages suitabie for heuris<ic
browsing, simple reporting, ana complex, formal
report generation are available. 8oth yser-
defined and formal default opotions are provided.
Repor: requests may be formulated dynamically or
executed from data base stored procedures. Sor:s,
arithmetic expression processing, logic structures,
and system supplied function are also included.

v

L Y. USER A. Manipulation
INTERFACE Languages

English-1ike. Self-contained Query/Update lan-
guage for single/multiple user interactive and
batch processing,

Mode of
Interaction

o
.

Interactive or batch. All Self-Contained and
HOL languages supported in both batch and interactive

‘ modes, I[nteractive supoort via MRI's TP 2000,

CICS, INTERCOMM, TS0, and others,

C. Error
Messages

{ English-like text messages provided for self-

contained language user, and diagnostic return
codes and messages for host language programs.
Centralized Messages and Codes Manual. Microfiche
early warning for systems support personnel.

0. Oocumentation

Modular documentation designed to satisfy the

needs of each type of user. Structured top-down
from concepts to language specifications to admin-
istration and support. Strong reliance on examples
and usage guidelines.

7. Appucmoul A. HOL Interface
PROGRAMMING

Interface available for assemoly, COBOL, FORTRAN,
and PL/1 languages, HOL interface includes a
precompiler which transforms english-like
commands embedded in the HOL code to DBMS call
commands and the necessary parameter lists. The
interface allows run-time HKOL interaction with us
to sixteen open data bases at 2any point in time.

8. Subroutine
Capabilities

Modular HOL programming is suppor<ed with CBMS
processing available to main line and suborginac.
modules. SCL commands ('strings") may be store-
with the data base definition and executed by
entering the string name. Parameters may be passac
at execution time. Strings may te caiied Sy other
strings and both retrievals and ucdate may de
perfarmed. Zxternal command ¥{les may te read.
Calculation definitions may be storec as virtuai
{tems in the cata base. Calculation definitions
may be parametric.

c-9

LR N i Yl ~ AR A Y AP M Bt Il ST TR B R A eC S M A A i b i : ML AN R A M S e A AT A >3

Table -C3-2
MRI {cont.)

,, . TN
Adrcdcd ol

—

o .

!
- ! —ac .
FUNCTION PROPERTY 3 PARAMETERS L

C. Special HOL support for dynamic subsets (LOCATZI), network
Operators retrievals (LINK), sorts (QRDER 3Y), and automatic)
return code processing (FOR RC) are examples of spe- -]':
cial operators.
Special operators in the SCL includes histograms
systam functions (SUM, AVERAGEZ, STD DEVIATION,
| COUNT, MINIMUM, MAXIMUM), and user defined calcu-
! lations using the () + - * / symbols are examples.

YT

D. [/0 Qutside Any format output file from HOL intarface Program. -

DMS Report files created by Self-Contained Language »
and Report Writer. Unload to value string format o
provides capability to move data-base across :
hardware types.

€. Auxiliary | Intermediate results may be stored and manioulated '}*:
Storage in the salf-contained report writer. MWork areas, e

database table pages, sort and scratch files managea S
I | by DBA tuneable Buffer Manager,)

YII. DATA BASE | A, Data ! Automatic checking on all fields based on data type. SRR
SECURITY, validation Further data checking may be performed by usar HOL
INTEGRITY { programs. Customized data validation via the user

AND exit facility of the Universal Software Interface.
ADMINIS -
TRATION 8. File Security via passwords at item level. Authorization

Protection for retrieval, update and/or qualification optional.

Security by data value at the hierarchical record

Tevel, User exits available for custom security

checking. .

o

C. Surveillance Two levels of logging (accounting and system usage)
provide data suitable for surveillance needs.

J D, Failure | Multiple recovery techniques which allow the DBA to

. Protection | trade logging overhead for recovery speed, Capa-
bilities range from automatic roliback 5 salf-
contained dump/restore utilitias. Recovery tach-
niques can be specitied for each individual dat2 base
and can be changed ypon command,

. usage mode.

—— — aman o T v . Rings gne 4 = At st s T T
&
¢
=
[-
L
.
Tazie lo-.
3 1B 37G/0S
g IDMS: CODASYL-TYPE DATA BASE MANAGZMENT SYSTt™
] |
B FUNCTION PROPERTY PARAMETS S
3
- 1. DATA BASE A. Item User - assigned names, Formats are those of sup-
| DEFINITION Description porting host language.
- B. Logical Network structure is through CODASYL'S set relaticn-
1 Structure ships. Several types of relationship possible.Mem-
g i bership may be mandatory or optional, manual or
. , automatic. Linkage options allow one or bidirec-
; tional pointer chains and member to owner pointers.
.]
. ' C. Physical
3 : Structure i User may specify storage area for occurrences of
1 : | record type. Other options: System handles all-
k i | ocation and optimization of peripheral storage.
; i DB administrators may assign DB portions to
3 ‘ } physical areas.
[E. Access ! Chained, direct, randomized, sequential, sec-
Methods i ondary index.
|
‘ F. Special Storage f Space management paging technigue.
l Techniques :
17 DATA BASE i . Input via user application programs, or load
(CREATION | l utility.
AND ! i
111 REVISION i | Modification of total DB descriptions (schema)
| can be handled either with a reload or restruc-
! I ture. Subschema can be modified at any time.
S 4
IV. DATA f A. Selection | At record level by record identifier or placement
4ANIPULATION i Level i relative to other records, or secondary indexes.
| B. Operators, Function of the host language and user programs.
j Comparators,
: Logical
i Comolexity
| C. Reporting Reporting done through user program. OLQ
g facility.
V. USER i A, Manipulation C0OBOL, PLI, Assembler Macio, CALL, FORTRAN
INTERFACE ' Language
" B. Mode of CV option allows several DMS tasks to share same
Interaction copy of system in a multitask environment. CV

perfoms task monitoring and threading of DBMS
calls. System includes monitor interface and a
TP monitor. With monitor, each task can access
any DB areas available for the user's declared
GCI ensures that more than one task
does not update the same record ¢ “he same time.
Multi-threading and multi-tasking central version.
Intergrated D8/0C functions.

¢-Nn

J
{
.4
b

L Jor e
it ctbenimednfendeniminmind

.- -
. .
L

-—

ol
PO S

. e, e

PR

A g

Lo,
20, o o

o

i

1

TS

I\

g Pl e ach e
‘ M

TR ———

R
- RER R

IBM 379/0¢

IDMS: CODASYL-TYPE DATA 8ASE (cont

I
FUNCTION BCPERTY i PARAMETZRZ
1
C. Error | Compilation errors listed with COBOL source
! Messages | statements. Error status is returned after DML
| statement execution for all host languages.
D. Documentation l Standard user documentation.
i
VI. APPLICATION ! A. Hol i Througn call statements.
PROGRAMMING | Interface !
! 8. Subroutine } Function of user's application program.
' Capabilities i
i C. Special . Limited to those provided by host language.
i Operations g
: D. I/0 Done through user programs.

Qutside DMS

E. Auxiliary : To be provided by user on his program area.
Storage §
VII DATA BASE A. Data Data item integrity is user's responsibility.
SECURITY, i Validation Record placement is verified by program following
INTEGRITY i ; user placement options. System provides data
] ; | dictionary reports to DB administrator to docu-
ADMINIS- . , ment DB contents.
TRATION
¢ B. File Access restrictions via subschema. Normal,
z Proctection protected or exclusive retrieval or update can be
} specified for each area. Record level lock for
f concurrent update and deadlock protection.
; C. Surveillance Security dump provides DB copy and statistics
; of DB contents. Any part of dump may be re-
i i loaded using the security restore utility.
| D. Failure ' Restart/recovery utilities
' Protection

LY SRR

.-
“

P N Y

T T T e e T e T e e e 4T s e T e e e o A

.o - .
“r PR

HONEYWELL 6180U/GCI% L
TOTAL: HOL-BASED DATA BASE MANAGEMENT SYSTEM o
- @ !
, FUNCTION PROPERTY PARAMETEZRS
. 1. DATA BASE A. Item User assigned names. Data formats are those of
- DEFINITION Description supporting host language. . .
H B. Logical Network multilist structure implemented via chains -.1,A4
Structure of bidirectional pointers linking variable entry
- | records on the basis of relationships specified by
2 user. 0B elements include items, groups, records,
4 files. Multiple linkage paths may be extendad over o
[' several data bases. Each linkage path corresponds to]
! a single entry file which provides pointers to the 1
e L chains of the linkage path. 3
| — - g
1 i C Physical Records are fixed length, although several record y
i tructure formats on any given file. Single-entry records are
' | accessed by a randomizing procedure using a key value.
; Variable entry records are then accessed following
pointer chains. All data sets can also be accessed
i serially.
h ' 1
D. Access | Disk access is through BDAM and/or VSAM. .
Methods ! ']
1 L
E. Special Storage g Multiple files can share an I/0 buffer as specified LT
Techniques by user, but single and variable entry data sets may NN
not share same 1/0 buffer. A linkage path may be
specified as "primary" to optimize physical placement BN
of records. TOTAL provides dynamic reallocation of . 1
space and optimization of synonym chains as well as S
user control parameters which optimize seek time. Cee
1I. DATA BASE ! Input via user application programs or optional o)
CREATION \ database administrator utilities. N
I11. DATA BASE ! New records can be added, deleted, or modified from N
REVISION | existing files. New data sets, linkage paths, record - 1
\ elements and modification of storage areas require o
; 08 re?eneration, but not necessarily program or o
! D8 file modification. :
Iv. DATA : A. Selection At field level based on field values. Items described ' ;
MANIPULATIONI Level by name or by position (in the case of records) along]
! with the linkage path. -
. B. Operations, Standard comparators., Complexity is function of
Comparators, user program.
Logical
Complexity o
- ; 9 A
. C. Reporting i Reporting via user programs with optional on-line R
! | query and batch reporting system capability. 1
, Output to all devices available to user programs. 1
1
c-13 7 |
v

L. ..

- e 2 4 e 4 e e A% mhafa et oalatal S S SO S Y PR

b
.
i

-
P

R LW T v R ar peeagrRm———
[.

it sodiit wolith Sl At Shui Beshs S ettt et AR e fr e P R St g |

—amt g s ~ape
VI0IE Lom- “oht.,

HONEYWELL 612C/3008

|
|
i
|
|
%

TOTAL: HOL-BASED DATA BASE MANAGEMENT SYSTEM (cont.’
[}
FUNCTION ! PROPERTY i PARAMETERS
|]
o
V. USER A. Manipulation i Any language supporting subroutine calls.
INTERFACE Language
8. Mode of TOTAL: Batch or on-line full muiti-task, muiti-
Interaction thread system. Transaction logging (before and after
| images). Records locked (one per file per task) when
i task is updating. If locked record is requested by
| other tasks (as monitored by the system) it is released
‘ on a "time/request” algorithm to other tasks. Original
1 ¢ task will be posted with a status indication.
i C. Error ! Error condition returned through user specified
Messages f status variable when using data manipulation
! language.
D. Documentation ; Total DOBA, total applications reference manual, total

utilities, batch retrieval user guide, comprehensive
retrieval user guide, on-line query user guide,

data dictionary manual, data directory manual, on-line
directory maintenance manual.

APPLICATION | A.

HOL Interface

Data manipulation is via user application programs

PROGRAMMING : + that issue calls to TOTAL.
]
‘ B. Subroutine ! Function of the supporting host language.
! Capabilities i
. 1
, C. Special i Function of the supporting host language.
| Operations |
© !
iD. 1/0 Outside ! Done through user-provided programs.
- ms |
' |
CE. Auxiliary 1 To be provided by user on his program area.
: Storage g
i
VII. DATA BASE A. Data Structure validity provided by system. Additional
SECURITY validation integrity checking obtainable via special system
INTEGRITY, ; exit to DB administrator programs.
& T
ACMINIS- !
TRATION B. File i Special exit is provided for interface with user-provided
Protection security procedures. Full DBA capabilities to control

user access include sub-schema (1o 1cal view) which
specifies user password, usable se* ¢ elements (data
item names) and inter/intra file access.

v'

e b

ad

ot A AR NI S b et i e e e IO A M N “ - T
. 4
8 ’
] -
- M ‘]
-
N I
{
Tagie T4 Lont
AONEYWEL. 613C/GC0Z
TOTAL: HOL-BASED DATA BASE MANAGEMENT SYSTEM (cont.) L
— _’ i A
FUNCTION PROPERTY PARAMETZIRS
C. Surveillance Content validity must be assured by user application .
. program.
2 D. Faflure Restart/recovery procedures are provided. Forward -
:‘ Protection and backward processing of update history, optional . .
8 automatic task level checkpoint, and other capabilities - :
3 available under ENVIRON/1 (Cincom TP monitor), and L
{ CICS. L
X ; .
' ! IR
- . l -9
3 i " .
Y :' i PR
) e
| d
[.1
| , J
| e
|]
! d
l
1
|
i
!
|
; 1
e
) 1
- -y
i
%)
H . q
i = 1
c-135
w

i~ OODEINDN~ i
A P A B . .

- R

FUNCTION

Tanie]

c 13-
i8% 370/C¢

IMS: HOL-BASED NON-CODASYL DATA BASE MANAGEMENT SYSTEM

;.1'.«

PROPERTY

PARAMETZRS

L.

DATA BASE A.

DEFINITION

Item
Description

Items described in data base description (DBD) for DBMS
sequencing and selection function, described in program
at segment level for standard program use. No restric-
tions on types and coding in DBMS. With IMS/vS 1.1.5
will have field sensitivity.

Logical
Structure

Basic unit is segment but with 1.1.5 programs may
retrieve, insert, replace, by fields. Also, logical
structure may be obtained thru secondary indexing or
logical relationships. Logical relationships may be
between segments within the same physical database or
different data bases. Structures may be inverted thru
these logical relationships or secondary indexing.

Physical
Structure

Fixed length blocks. Variable length records and
segments. Common buffer pool stores all data for
DL/I language access.

Access
Methods

Access methods: HSAM, HISAM, HIDAM, HDAM. HSAM, HISAM
are sequential. HDAM and HIDAM are direct. HDAM is
randomized, HISAM, and HDAM support the inverted file
and VSAM. VSAM can be used for HIDAM, HDAM, and HISAM
data bases. Inverted data bases supported by all of
above.

Special Storage
Technigues

+--

Special storage techniques in HSAM, HISAM, HDAM, and
HIDAM minimize storage requirements. For further

data compaction an exit is provided in DL/I to a user
routine. VSAM compacts indexes. Distributed free
space can be requested at load or reorganization time
to accommodate insertion of segments near their parents
or twins. In HIDAM and HDAM, deleted segment space

can be reused for new data.

e, T

I1.

DATA BASE
CREATION

User program normally used for file creation.

-1 @y -

III.

DATA BASE
REVISION

Logical structures are modified in the DBD and do not
necessarily require file activity. Experience
indicates minimal impact on programs.

Physical structures are modified in the DBD and will
normally require dumping and reloading of the DB.

Iv.

DATA A

MANIPULATION

Selection
Level

At segment level. Items can be described by names,
codes, or relationship to other items. Can be made

by requesting a single segment, or a path of segments,
or in 1.1.5 by retrieving by field. Any field in a
segment can be used in a search argument.

Lo o
cL J.,‘ R P S

reaTwY

ot e

I ACTAGI S-aa i s Shu e S

tmug mme Ae
DR Y

iMS: AOL-BASED NON-CODASYL DATA BASE MANAGEMENT SYSTEM (cont.’

FUNCTION

T
| PROPERTY

PARAMETZRS

B. Operators,
Comparators,
Logical
Complexity

Operators: AND, OR, LOGICAL AND.

Comparators: EQ, NOT EQ; GT, GTEQ; LT, LTEQ.
Limited, heuristic, and special structure searches.
%igh: logic combinations can occur at each segment
evel.

C. Reporting

Reporting via host language or GIS. GIS produces
default reports, page numbering and multiple page
headers automatically. Output to all devices supported
by IMS or the CPU. A response can be reviewed at a
terminal and then sent to some other terminail for
further processing/review.

V.

USER
INTERFACE

Manipulation
Language

,_‘ =

Through service calls from host language.

. English-1ike query language. (GIS)

B. Mode of
Interaction

Batch and on-line. Access lockouts at the page level
for concurrent update purposes. Concurrent retrieval
is always possible. IMS/0S provides interminal
communications and remote job control with dynamic
priority assignment. Programs are not locked out,
they will always schedule into the message region(s)
to process. Program isolation allows two or more
programs to operate concurrently. If a user program
updates a particular segment, no other program can
access that segment until the update program reaches
a synchronization point, or is complete. (Program

| Isolation in nC).

C. Errvor
Messages

Status code returned in response to all requests for
data. User can check for error. Trace facility

can be invoked at test time to provide data on each
DL/1 call.

Malfunctions and errors, displayed at the [MS master
terminal.

D. Documentation

DI/1 general information manual GH20-126Q, terminal
operator guide SH20-9028, system program reference
manual SH20-9027, applications program reference
manual SH20-9026, system applications design guide
SH20-9025, utilities reference manual SH20-9029,
messages and codes reference manual SH20-9030, IMS/VS
conversion planning guide SH20-9034, systems documenta-
tion (licensed), message format service guide SH20-
9052, and advanced function for communications SH20-
9054. GIS general information manual GH20-9035,
executive query reference guide GH20-9043, language
reference manual SH20-9038, MSG and codes SH20-9039,

. advanced query reference manual SH20-9040, program

reference manual SH20-9037, and systems documentation
(1icensed).

c-17

O Y S

PURN

PO

T

L gush e & AN Qe
..‘.J

v“ivvw T
. st

.
v ‘

18M 37C/2¢]
IMS: HOL-BASED NON-CODASYL DATA BASE MANAGEMENT SYSTEM (cont.) o :
-
— e —"* -«
FUNCTION PROPERTY PARAMETZRS)
VI. APPLICATION | A. HOL Interface Standard call interface specifying: function, logical
PROGRAMMING file, 1/0 area, search argument. Implemented for e
coBoL, PL/Y, ALC. ' ﬁ
B. Subroutine Standard host language rules apply. @ °
Capabilities .
C. Special None.
Operations
D. 1/0 Outside Selected sets become named files in three possible "4
: OMS states: a vector file, an ordered list file, or the » 4
! ' data file itself. Data file cap be saved on any o
i supported device via the DUMP command. Vector file '
i | or ordered 1ist file savable in multithread version. T
E. Auxiliary GIS provides permanent and temporary files. C
Storage .
' -
VII. DATA BASE A. Data . Checking only for data structure and sequencing. . p
SECURITY, Validation Exit provided for user program. Editing facilities :
gNTEGRITY, in query language. "
T
ADMINIS- B. File Segment sensitivity and processsing intent level of o
TRATION | Protection control-done in program specification block (PSB). C
| User provided encryption, decryption can be implemented . B
within the DMS through a special exit. Password and [)
i user profile carry security to the field level and -t
} beyond with qualification of user. Field sensitivity e
i in IMS/VS 1.1.5 (and intent). RO
1 Y
| C. Surveillance A1l activities logged, including security violations.
; Logs available for statistical processing.
i D. Failure System automatically logs all changes to any data ’
i Protection base and provides compliete recovery utilities for -
| restoring data bases without re-executing application :
i programs. Checkpointing and restart facilities
i including synch of DL/1 and 0S checkpoints and
! critical areas in the application program are also »
provided. System can continue running if application -]
program fails. ’
]
i
c-18

P Py ———rr o a e E AN A S A ST T TR s e T T
Tabie C3-¢
HONEYWELL 6180/GCOS
MRDS: SELF-CONTAINED DATA BASE MANAGEMENT SYSTEM
FUNCTION PROPERTY PARAMETERS
I. DATA BASE A. Item Haming: 1 to 32 character names.

DEFINITION Description Format: Standard PL/) data type declarations.
String Types: Fixed/varing length bit and
character strings.

Arithmetic Types: Real or complex, fixed or
floating, binary or decimal.
Alignment: Word aligned, byte aligned, or un-
aligned.
B. Logical | Groupings: Pata base, files, relations, tuples,
Structure attributes, domains.

Linkage: See "Physical Structure.”
Structures: Relational. List, tree, network struc-
tures definable at query time.

C. Physical
Structure

Data Base: Implemented as a directory and
subordinate files in the Multics Storage
System.

Disk Assignment: Interrelation clustering (op-

tional), fixed and variable length fields.

Ordering: Ascending primary keys.

Linkage: Direct links, secondary indexes.

D. Access Methods

System Interface: Multics virtual file manager
{vfile=). No special /0.

Methods: Keyed sequential, random, 1inked, and/
or hashed.

g. Special Storage
Techniques

Compaction: Encode and decode procedures.
Variable length fields. Unaligned data.

Efficiency: Interrelation clustering. Blocked
(pre-allocated) files for hashing. Otherwise,
keys are stored as B*-tree.

II. DATA BASE
CREATION

Creation: "create-mrds—db" Multics command
which translates a user written data model
source and creates a corresponding data
base shell.

Loading: Applications program(s) or Linus EUF
*store" request.

ITI1 DATA BASE
REVISION

Utilities: 'restructure mrds db' Multics com-
mand allowing redefine, define, and unde-
fine operations on files, relations, attri-
butes, secondary keys, and foreign keys.
Minima) to no impact on application pro-
grams usfng submodels.

c-19

L U U W T VA W W A a PO ea s toa -

v I""‘v’f".fr "
. e E A
. .o E T IS

Taple (3-6 (Cont..

HONEYWELL 6180/GCOS
MRDS: SELF-CONTAINED DATA BASE (cont).

TR ——"

FUNCTION

PROPERTY

|

PARAMETZRS

IV. DATA

MANIPULATION

A. Selection
Leve)

Selection: attribute(s), tuplie(s)., relation(s).
Qualification: attribute(s),or function(s) of
attribute(s).

B. Operators
Comparators,
Logical
Complexity

Comparators:=, - =, >, <, > =, < =, Arithme-
tic Operators: +, -, *, /

Builtin Scalar Operators: abs, after, before, ceil,
concat, floor, index, mod, reverse, round, search,
substr, verify.

Built-inSet Operators: differ, inter, union, Boolean
Operators: & |, *

Other Operators: User definable scalar functions.

Logical Complexity: Unrestricted. Relationally
complete.

*Linus EUF also includes the builtin set operators

avg, count, max, min, sum, and user definable

set functions.

e e

C. Reporting

Sorting: Interface to standard Multics sort
commands .

Reports: Interface to the Multics Report Program
Generator (MRPG).

*Linus EUF contains, in addition to the above, a

basic report capability with controllable (or

default) headers and column-widths, settable

break-1imits, and interfaces to the Multics File

System and Lister facility.

v.

USER
INTERFACE

B s St

A. Manipulation
Languages

HOL relational calculus selection expressions.
Linus EUF: HOL Sequel-like selection expres-
sions.

B. Mode Of
Interaction

Interactive, Absentee (batch), RJE; Interface at
Multics command level, Linus EUF subsystem, or
application program Call; Concurrency request
thru]r/d/s/m permission at data base or relation
level.

C. Error
Messages

Creation: Compiler-like error messages at date
base and data submodel creation time.

Application Programs: Symbolic status/error
codes translatable into short or long mes-
sages.

EUF: Status/error messages within Linus.

D. Documentation

MRDS Reference Manual (AWS53).
Linus Reference Manual (AZ49).
MRPG Reference Manual (CC69).

Multics "help" command and Linus "“help"

request. Marketing Education F31 and F32
course workbooks.

c-20

P A A& o P S S

A .8 . & =

T YTy

i Nt Sndnma R 4 - R R T —r———————r

Tatie C3-6 (Cont.;
HONEYWELL 6180/GCOS

MROS: SELF-CONTAINED DATA BASE (cont.)

FUNCTION

PROPERTY

PARAMETZRS

VI. APPLICATION
PROGRAMMING

A. Hol Interface

Languages: "call" interface from all Multics
programming languages, Selection expres-
sion is passed as a character string argu-
ment.

COBOL DML vertis also supported.

B. Subroutine

Full capability to store procedures, directly

Capabilities callable from command level and/or other
programs passing arguments. Recursion and
i inter-language calls fully supported. Linus EUF
! has macro storing an invoking capability.
C. Special MRDS automatically performs data conversions
Operators following ANSI PLI conversion rules.

*Linus EUF has set operators avg, count, max,
min, sum and arithmetic expressions which
operate on the data after retrieval.

e - ——————m -

D. 1/0 Qutside
OMS

Transportability: Data is completely transport-

able and/or directly usable by other Multics
, facilities such as the graphics system, text
formatter, report writer, and application
programs.

E. Auxiliary
Storage

Temporary Working Areas: Temporary relations
which become a logical (and physical) ex-
tension to the data base for the user defin-
ing them.

Permanent Working Areas: Standard Multics files.

VII DATA BASE
SECURITY,
INTEGRITY,

&
ADMINIS-
TRATION

A. Data
Validation

Validation: Domain verification enforcable at
store and modify times,

Integrity: Encode and decode normalizatton,
Interrelation integrity enforceable via for-
eign key concept.

B. File Protection

Level: Access rights definable at data base, file,
relationa and attribute levels.

Permissions: Retrieve, modify, store, delete
permissions.

Qualification: Person id, project id and/or
global,

Enforcement: Hardware and software enforce-
ment via Multics Access Control List and/
or ring mechanism.

C. Surveillance

Within DBMS: None at the present time.
Qutside DBMS: Standard Multics facilities for
auditing access violations.

c-21

0

& b

- ‘--4

-.-'-14

-*ir“*

ddxha

N S
DU

7apie C3wo
HONEYWELL 618G/GCGS

MRDS: SELF-CONTAINED DATA BASE (cont.;

FUNCTION PROPERTY ! PARAMETERS
=]
- D. Failure Backup: Standard Multics backup and retrieve
[Protection facilities "dump mrds db" command to
backup (to tape) a quiescent data base. h
Rollback: Commitment/rollback capability (at o
" file manager level) is cuurently under devel- ‘g
| opment . .
| Restart: Standard Multics Emergency Shut- R
5 ' Down (ESD) and restart capability. S
! ! .
3 i ! T -
g : » -
b, H
|
- i T
C i =
& | L
. ! ! e
Iy ; : 5
i ' s
. . i .
! ! :
b~ i : :
., i i =
2 : :
E ; ;_4
] i s 9
N | 3
4 ; i .-
| | .
% i =
. |) il'.1
L. ! ." 1
. : _»:q
i - 9
; -
, 1
- ’..‘1
' <4
- ~ -1
. . .
3 i
‘; [
! : -
. :]
C-22
— — T T T o 1
~~~~~~~ Aaas o — - — o . A G i




TABLE C3-7
HONEYWELL 6180/G6C05

MDQS: Self-Contained Data Base Management System

FUNCTION

PROPERTY

PARAMETERS

- 1. DATA BASE
b

A.

Item
Description

1)

Data - Item identifiers can consist of a simple
30 - character name or it can consist of that
name plus an entry - name qualification, a
mask option, and or a conversion subroutine
specification.

. Logical

Structure

N
2)

3)

Elements: Data (field), record, file, data
base; schema; networks and hierarchies.

The Application Definition File (ADF) is pre-
pared by the data base administrator for the
MDQS user. The ADF contains; data base re-
ference name, entry names, and ftem names.
Relational items -

-

Physical
Structure

i e e e

1)

The CREATE statement createsone or more new
sequentfal or indexed - sequential data bases
from one or more existing (transaction) data
bases, with transformation of the transaction
entries into the forms predefined for the
desired new data base entries.

Access
Methods

Sequential, index sequential, and integrated
Concurrent data base access

Special
Storage
Techniques

Implicit storing of the new - entry data base
is performed only if the CREATE statement is
unlabeled.

In explicit storing the user can specify a
WHEN SEQUENCE error to do additional pro-
cessing.

i

|
II. DATA BASE |
$ CREATION |
AND g

T11. MAINTENANCE |
!

i

|

]

|

1)

Data base creation and maintenance permits
3 user to:

® access da;a with full concurrency

® create a data base from one or more tran-
saction data bases

o update multiple data bases from multiple
transaction files

¢ write and or read auxiliary files res-
siding on disk or tape

o combine two or more data bases into a single
data base

o split a data base into two or more data
bases

e create a data base that is a subset of a
data base

-&V . DATA BASE

MANTPULATION '

A.

Selection
Level

S S

1)

At the element level for interactive users

C-23




3
Table C3-7
HOMEYWELL 35180/GCCE
_ MDCS: SELF-CONTAIMED JATA 3AS:  (ITNT.,
! '
FUNCTION i  PICPERTY i SLRAMETZIRS
[}
8. OQperatars, f Five binary operators, unary operator, logical,
' Comparators, ; relational. Full set cf BOOLEAN operaters.
: Logical ! Conditional expression comparators.
! Complexity :
. C. Reporting i Flexible parameters (or default specs) for page
. i length, indenting, titles etc. Reporting is at
) ! | the Query level. Defaults or user specifies
.- : | titles, column separators, and data item display
X | ; editing characters with clauses that serve as
i i modifiers to the PRINT statement, These clauses
& i are TITLE, COLUMN, and PRINT.
2 V. USER + A. Manipulation i The conversational Management Data Query (CMDQ)
3 INTERFACE : Language ! subsystem through a conversation with the terminal
- \ ' user, generates a4 MDQS procedure which will access
¥ i a data base and display the desired information
; ; at the terminal or optionally on a file for later
; ! viewing. The Query Language allows a user to
i i generate a report.
! Primarily procedurs selection.
! 8. Mode of ' On-line and batch.
f | Interaction ;
\ i C. Error i The user is given a list of the valid responses.
' Messages |
! D. Documentation | Standard references.
YL, APPLICATION No HOL interface.
Rk PROGRAMMING |
g v1l. DATA 3ASt f A. Data Data value integrity is user's responsibility. The
3 SECURITY, : Validation Application Definition File (ADF) is prepared by
[ INTEGR:Y, the DBA for the MDQS user, The ADF describes <he
- % names of elements & contants of the data base.
[ ACMINIS- i
5 TRATION i B, File The user must previously obtain user profile
3 ‘ Protection subsystem (UPS) permission from the DBA before
o f execution commnads PASSWORDS.
-9 C. Surveillance N/A
F D. rfailure Restart/recovery/rollback
| Protaction
p. :
- i
L‘.
=
. i
- :
.
- C-24
’4
L

—."i

P

e m e e e Redtimal e A A & m e me e e Al 4. o

O NV



o

NIRRT
Aol 2 4 4 2 Y

g
APPENDIX D
TOOL SURVEY




Y Y

T land

o~ o

~YE

SECTION D-1
PURPOSE

A survey of software tools on the candidate target environments was conducted
during the first phase of the AMT contract. The purpose of the survey was to
identify software tools that could be incorporated in the AMT. The survey was
limited to the candidate environments because it was felt it was beyond the
scope of this effort to transport tools from other environments. The criteria
for selection of a tool for consideration for incorporation in the AMT were:

o Applicability to software measurement (Did the tool provide any metric

data?)

0o Portability of tool (Can the tool be used on different hardware
configurations?)

o Interoperability of the tool (How many modifications to the tool are
necessary?)

0 Usability of the tool (How much effort is required to learn how to
operate the tool? How much effort is there to preparing input and
interpreting output that was tool-driven?)

The results of this RADC Tool Survey are presented in matrix form in paragraph
3. Background information and analysis of the state-of-the-art of software
tools and their applicability to metric appear in paragraph 2, preceding the
RADC Tools Survey. As a result of tis analysis, selective RADC tools that
have compatible hardware/operating systems with the target environments are
also included, in the matrix of paragraph 3. Finally, paragraph 4 describes
the actual tools to be used in the AMT, what other tools were considered for
use, or what tools were applied during its development.

D-2

)

P




LA a o L an o an g s an o e e ame

SECTION D-2
CODING AND IMPLEMENTATION: METRICS APPLICABILITY

The origin of code inspection was structured programming and allied software
engineering technologies of the early 1970's. The goal of automated static
analysis/evaluation has been to automate the compliance with the techniques
and make a search of program properties.

The program parameters are structure-based (program 1logical and data
structure, naming conventions, documentation conventions, etc. ), control/data
flow based (avoidance of undue control complexity; assurance of
well-definedness of variables, etc.), and interface based (assurance of
correspondence between modules, subsystem, inter-system, etc). The
anomaly-detecting metrics have to do with standards enforcement (deficiencies
in source code), whereas the predictive metrics quantify the logic of design
and implementation.

For example, the JOVIAL Automated Metric System (JAMS) is designed to collect
structural information about JOVIAL programs. GE's Integrated Software
Development System (ISDS) provides a capability to analyze other 1languages
including FORTRAN. PDL, IFTRAN, and PASCAL. A major subsystem of ISDS, the
generalized parser (GNP), the grammar description language (GDL) and grammar
tables, provides this capability and will be used in the AMT,

Symbolic evaluation of code has as its goal the "interpretation“ of program
behavior at the programming language level. Assumption must be made about the
environment, the deterministic properties of the programming language
behavior, and the outcome of symbolic execution results. On systems such as
DISSECT or MACSYMA the user interactively chooses a path and performs symbolic
interpretation of actions along the chosen path. The system then displays the
“formulas" to the user. The user compares original and implemented formulas
for equality. Differences between computed and actual formulas are mistakes.
Special formula formatting methods are used to make these differences highly
visible. Final control software is not yet available. Symbolic evaluation
has good candidate potential for the accuracy metrics at the system level.

0-3




oo e b a0 e a4 r

— viv
- -

R
- .

ol Al A b b i an o o) 4

The final type of static analysis tools, proof of correctness, can be used at
the system level, subsystem level, or the module level as assessments of
different levels of correctness. The Failure of Proof Method (FPM), uses a
mathematical approach to proving the correspondence between a program and its
formal specification. The consistency metric is highly visible here.

Dynamic testing is achieved through system exercising of programs. Typical
self-testing metrics for higher level language systems have been built on a
experimental basis and include:

0 Automatic specified percentage of program logical segment coverage in
any one test; aggregated test coverage of close to 100%.

0 Assistance in setting input values and evaluating output values.
o Some form of automated results comparison.

These dynamic test tools consist of two basic modules, an instrumentation
module and an analyzer module. The source language program is submitted
directly to the instrumentation module. Then the instrumentation module
accepts the source program of the module under test and instruments it by
inserting additional statements in the form of counters or sensors. The
instrumented source file is compiled and executed. At this point an analyzer
module produces a report documenting the behavior under the test during its
execution,

D-4

PP Y




A el mant aubEE s T~

I — LR

MSERERE I P G

Y Y

Typical metric - like data reported are:

Max and min values of variables.

Number and percentage of subroutine calls executed.

Measures of program complexity.

Statement consistency checks.

Program cross-references.

Trace capability.

Flagging of non-ANSI code.

Logically impossible - path detection.

Subroutine argument/parameter verification.

Data range check.

If statement trace.

Branch trace.

Subroutine/statement timing

Min/max assignment values.

First/last assignment values.

Min/max DO Loop Control Variable.

Final DO Loop Index Value.

Final branch values.

Statement, path, segment, module interface or flow execution fregquencies
Specific data associated with each executable source statement.
Subroutine retrace capability, complete calling tree, reverse execution
capability.

o Performance indices for modules and input data.

©O O O 0O O 0 0 O O 0 0 0 0 0 06 00 0 ©0 0 o

A list of dynamic tools would include: JAVS, CABS, FAVS, RXVP, FORTUNE, CIP,
FORSAP, FETE, PPOGFORT, PROGTIME, TPL, and TAP,

The goal of mutation analysis is to show that small changes in program are
discovered by test data. Conversely, the test data must be strong enough to
catch the significant errors. Relevance to error detection metrics is obvious.

_'l




T Y M

et

A Aol o8 o mae a8y
i

The Pilot Mutation System (PIMS) has been applied to FORTRAN and COBOL pilot
systems. Magnitude of the mutant error is classified as:

0 Program does not compute.
Program computes but does not run test data.
Program compiles, test run is satisfactory, and the program {s either
logically equivalent to the original or test data is not good enough.

Reliability analysis is still in its infancy. The goal is to determine
whether all defects have been reliably removed by tests. Any error must be
made known by some combination of inputs. Following this theoretical approach
of examining all possible input combinations is prohibitive in terms of cost
effectiveness and computer time/capacity. The Next Error Discovery Predition
method fails because software reliability simply does not follow the
probability laws of hardware reliability.

PV S

- |

ana 4 o

3

bbbt o

|-

d




SECTION D-3
MATRIX OF SOFTWARE TOOLS

The matrix of software tools having potential metric applicability follows in
Figure D3-1. It includes tools currently in use or planned for at RADC and
additional non-RADC tools also worthy of consideration for AMT development or
usage. Figue D3-2 illustrates the Software Tools Survey Sheet used to collect
information about the target environment's software tools.

"

A e s s




‘lil Ly Q 4 v Ea a8 1‘.1% kA v e Uiy 1 TP ) aat ~ - e vw -y ' 3 0 ‘4. .i:‘ ..A \.J.. lqlv 14 DA e T EhEUAER 4 A o
’, Alr ‘ ., .,,A. . j ‘ . ... o ' S - H L..<. .- - . .- m
b 4 Y T ' "
1
b .
-€Q 24nby 4 1
A
2 Juyrariun)
apo) g (d N
132K ouy Gugmyy (p 4
- KT
3 ~ruy Mol 4 P10 (D ! o
woLozie 402K euy Coe
S1S1/72Uwi Lenvey goo noLy (ea3e0) (q o
‘ ‘S143qoy €L1-6L-¥1-)0W a0} 432 Sgong ’ A
, pleuog ‘fujweaboay v/ v/N HY SN -euy adudsagny  Jweshoados iy
“a | Leuopivaadg NI LTED aae..u _!_..3 (elsog o _........._ ‘9
(sav)
\ UL Qamy o
. SIS1/20vy $029 Joy ducnajugem| sy a3y
' omjepeg | (PUOjIRsadg 08t SISI/XQvN | pye Aap p/S vo eiep syshpeny )
. WO " ay -.J..._.r.a j0 su...xx g rIng G . .
' suogyer| jdde ]
: 1/ SUOLIPI|IMN0D 404 aheyav, y
tevojaesad eee wiaoe | ec wiaoe S 3%) sweaboad 30 uayymg| yumdoganyg
1 ‘ogtm ~0ad my vy m..a-o.& 1APM] JOG D) .e .
RO R -1- e e e S DU e . .
(1A 4
/Sy reae) g’ hug s © |
SIS1/720vH (pavued) .r!_ SIUMIFIYS & o
3N J1SvVY 6-9¢-41-U0VY Jisvn panad *ay) swesfiosd] 01w e
se|bnog 1/d0] 403331 10) ‘17 1/u SOV SISI/20vE | J1Sve 40 sishimy]  ssnris 1
“aN| euogIvaadg PiisiieIg dseq ‘o819 u:o.a alse .a,_ RIAL [l 3 1
S1S1/20wy Lispueys Hugeee sfinul
oV ioW PWS)GPISD any| ]
pampiyl  (PvojIeaddg 140day €L WiAOr | €0 Niax N3y, -od 3 assguy |{4m i
) WAL MLIW 02€/09¢ WAl [121un |00y pAjeEnIny ot ' ]
’ LL61 Saa)om .
3 t'v A TE TS (A1 saed MRS J/ Jarhqeny -
, Anseay panueq CAL L P o0 XNQ) | 3 INH anpang Ayisaoajug | soompoad ¢ ey se AN v, C1
s, pensie Ju Sawag ], ‘w1l i anpang j:::a ww) srdany menpng | T
~ vl 1P .0 pnn)d a6 AH uj JKiedaam s - .
, - .- - - cmmf = — e e T ce tare sme emmall w—— - - | . - . - 4
, TIVHIAQ) . ovemwi|  w1ss 100 SHOTSHIA . , 1
, NN 1VINGD SIMVIS STHMLIN NOLIVINWWZ 1) FVIVONV L 0 AN L L SHOL T WUHSAS W
- - . o e e s  @v = om v o * emt m ceemm 8 eema = B cem.w - .. o e - . i m e M arem e e e W - . A}
_H ALITTIVIN iV JTHL W DNIAVI S 1001 TAVAI 0S40 X100V
s
LG e




g

L
4

v
Y
4

®
]
‘® |
——y
"
-
e
= i
PR PR |

(panuijuol) L-€q 3anby 4

w1y N

' -UDWINOND PAYeNNINe
; V)R NI SH] opad '
ANNS 3 Juamiogsaap ,.M
ﬁ- 2% 1Sa) SA0D A
' SIMIAIPPS | PHIND ]
N ¥ "S40449 UOJSIIA !
; -Un> opmm *SJ04Sd |  (SAVY) wRISAg oS
a SI1S1/20v asn/ias ‘squam|  wepIedyypaap
. eapuoy o] (euoiIriadg | §92-92-¥1-20V VI LV LT *S029 08tM ns0g | -3IPIS Aqeyieasin pa1 PNy :
, ey uy SAVS Y g [10 vopdMap d4ng PV TE YR :

892-€4-41- 0V ]

, Ay
' S1S1/2avy $,43%0 SAX® 404 (SAdr) seasis
g " 1ISURAP(S padojaany f2e2-9L-¥1-20W €L0 WIAOP | €L WIAOP IV SN Sajpdwn) 159) o yepg|ep 3

1Y buyag SAP Jagpden) WIAF® 6 ,
KAUSUAS puP SAATHN0D _ m
. ML - IpN1W Y a _

. 921-LL-¥1- VY weahoad ad)vdmnd d
1 140d0y YY) NP °Sase) -
[ 1023} SAVP 1593 (eunpypppe | (SAVE) w01sAS 4
. SIS1/a0ve 1¥2-8L-¥1- XIVY ars04 dogasap ‘siped | wn1ien)ppaap
. ‘edjuoy e1|  |Pwojresadg 1a0day ¢ WiAoe Wiar S029 AL Y °S°n weabosd poysm payrmoY |
. Weaq “an teu} 3 SAVP g -un Jo wnpyuhoray WIMN B o 9
! —— e rme s e b e e —— — - —— e - ———— — B e TR - D. 4

SIAPIMP NI
1 IUINMO) * SJUIMIEYS 4
3 40 SadAy ‘sheasr 4
SIS1/2a4vd £62-{L-¥1-2Wd 40 dameu § 74
ASUjAR]S ‘40)239((0) $079 0009/009 anaonyg pasn eyep Jo Hhy Aq 407 %4 (0)

. paedIy | (euojieaad) safIsnINg w/wian tr/wiaoe I3 INON Y ‘s°p [wesbosd adunos jo g SIS
3 Ry €/ Wine 1 ‘safiesase ‘sunn) v/ NI o

‘ A0 0

: vogymIaxny

. W Coziy weahoadoe g (4

‘ (emiey Q00 A0 PN

. SIS1/0vy PE€L1-64-U1- Ve v/ VN gy ase) 159} (6

, *swaaqopf  Levotyramdg ‘huynmeahoay P .<4 ..m 0 KLILREL S () °9
i pLring oy Avrriaey 13y N oS () .

. - .- e e ee e . e o e e ee e . a—- e o 0 e e emeiman . - - - . e e . ._‘

HIVH TAO) VIV WISSI004d SHOISH A . vl o

JMIMW 1WVINDD SOLViS ST M NOTLVINTHI 1N IRV Y SO mMt DS SHOI M E WIISAS W) kMl o]

1 - v mem e ... — e e e e f i s s e s icmas - e . - e o mme e Vs mm e e m——— .- - aae . .- DR - ‘.L

3 ALETIOVILI NldV D141 W INTAVIE ST001 IWWLI0S 10 XTHIVW " g
b
)
b

RS RIS RN




e Ly v ‘« o A4 v a4 o v haay 4 v AR e ) an > e £ i . g Lo - v p— v > » » yr—r——— ——yy -~
® ® ® . .. .. - -l - : A,
\ [} 1 ‘ ‘ .,
§
(panuijuoy) |-gq 8unbyy !
i
ccmang hugw ;,
~weahioad paamymars i
A g 0 pAagmh ~.
-a4 <aah)y 2ho| )
1000 Hseq N y
Atam 0) saweww.iho.ud 1
My 1 maad Yopym
ﬁzcn-:&—-ﬁ_s_ [ LT $quda bujamonas FETYLL L REXN)
S1S1/20vd SAYAdg TUMARON ERNTY) 30 miny ayy uy Huymee ihoeg )
Pedjuoy ) | (eunieaady Guguweshouy 040D NH0D ¥ 0L€ Wil Y s ate ‘g9GL-€2°C" X paaMm WIS s
ey W PRAMINNS CNM0) 01 SUNLIIPPY AW “6) |
ANPuA UL P
9 ‘wofyeuamndop
‘Gup3say ‘hugpod
‘ubysap Hugpngomg
SIS1/ouvd $sa20ad JuamdogAaop
*op.aecwo) dvm9 pue SITHWM/0009 a0y Moad iy jo sl (1rd)
aduaume| (euojresady W00 1SNV WHOD TIIMAINON My s | -se o spaodas glhacaqyy Jaoddng
T raoddns sapyansd (54| weaboag own 41
arasd e U
Mmd0 AP 2PN 1poy L
paysy Land -1§0% M Jo dan R RIT XN
SIS1/ 2w 134 00 ERNLY -L1e) Oy ampy weom A piari o ]
“3eayng ] (euojieaadg | ynammoop qeuyy S OB Ay SN puee Ay paeiqas EXT A FIUS .
uejy .4 MY J0 W0 IPAN| SHNOLAY €L )
TR LAY 1
1dads Wi M1 W)
‘ S9C-£1-41-20VY sajmspsuon Kue
TONW IS svd 1I9%ap (1 g dhenh ( ouwiIs)
S1SH/20vi 0} SuMIA0AdN] '2 - SW) RIS ESYLY) -uey aapan smifigy afentiie ) -
apun|  evopreaadg [y 12-52-3t-Javy ‘cLc/WIAor ONVHAS 0009/009 SIN a1y °s°n paYuamd duy a0 PMuR| A 4
ey finug “aw TONWIS ‘ee/WIAe pasodoad 0y pay |ty < pems C 24 :
) ity IR IR PN FUUHSIIRROI NNPIIINIPIETSERN SNSRI
A SPAPPUPYS {ean o |
SIST/ Vi S6€-9L-H1-J0W a0y Synags g tufgsap) -
edjuoy el  teuojiesadg ‘a0yipy NVHLHO§ NVYH1HO0I (LR ] AV SR R LLTLT R LU g Ay e,
ey ...:T apu) NVHIYO4 ~HIMIOP Pa] M RY] apa) Nviiaad " W I
- Vi 1A TNV a3SST0Nd SHOISH 1A WVN L
g RILIR LIVINGD SnLvis STINMTIW NOLLVINMI WML YWATNV S0 KM MS NOLEUY WUISAS W0 wont o AR
WA ol T T T T A NI Y 100 WOONTAVIL'S K01 TIVALI0S S0 X1V _
b
]
e —— .




— Y - : \ Ty oo vy Y Il T ) TLU en 7Tl w . __
» e o . » ® Y B s = e »! ®
\ . r [l ' B U - s . ) t ]
(P3nui3u0)) |-gq 34nby 4
. uny)
R ATVTRE T, T
ﬁ s34 pur wwahioad
] 9l6 P unIMag ADUIP
, fuyaaau)buy ~undsasa0d ayy by (H31) Postay
’ Pie a4en}jog -a0ud 01 yovoadde S LI
raeasay ‘sues) 33N CATRL, SR 10 qouag
‘¥)
§0 Ay
3 ‘uapacy N obajy veg
g ‘essoy fiuy290uy6u) ‘V) 40 “Ajug
40 “Ajun Py® {{/3aemyjo5 [Snasmpessey sysAjeue VHASWH
r. ‘yaed Y H§rrvasay ‘suedy 334 40 “AgUn W02 Iy (OymAs ¥ 11SSH0 ¢
! » 140day sy styskgeue
1 Li®)W Wy adky0304d euy asul NVHLNO4 ¥e WiAOP ov/1L dod » W03 WIADP e 2
. ) - — -{-- —f— e} - Y S PR et . —_—
‘ (Vsd/154) e
1 abenbive) ooll A AD7A VY T o
uebdIy Lt 0009 20 sgshpeur 1-0yes sajqal,
- 40 AU aqejear P -e21J4omig 0009 uehijyry g wopjeyam | Jabenlaw | Juam
{ boaydyal ] trevoyyesadg | s, 4050 ysd/ 154 NVHLYO weahouq 0Le val 40 “aqug | -noup syunmaagnhas |-ateig wagqneg oy
3111904 T I9RE] T 7% Pas Guidf Se parsil doN KNS ipSud) 0F S{00] Dishlios (FE0IY 1)
4
b
y _
.. _
b ;’S: [ RIS
_ S1S1/00vy wopIPa) ) 1498
| juay e navy ay 159 pmemnyne Yy
JuPa§° I [ LT W 0000 or Wi s ‘pmeahang L DU |
d Ve 1A0D TJOVIVONV | 475530044 SHOISHIA .a!..
ILIR ) 1VINGD SHvis SN NOLIVINHT LM TVIONV Y SO m/n TS KL URN LT HEISAS W
y
n
- N = AR VAN _ SR ST IRV




R ’ S I Ty e T BRI T L L v M N MO wn . N
£ » oo . . ,i S S JEA I . - Y .- -t
‘oL | AR o
, (panuijuo)) |-gq@ a4nby4
b
|-
W
3
.
3 ) .Lm x..».m_a._..um i adAymyoad R0/64-S21-119 L AhnLowmdag huypaas ..P...Iu T
$341%) jo 1s0day J0 amjIsng “Insaa Jo adky
L A11saaajugy *AHoouydag vihiaoag Ajysse(d vy
) )y ey 40 any sV tAa)ayang ‘Jurym @ aon
, ey61099 M TY LS -poad o) weab .
3 4O AUy -o4d (eujbjs0
L' u§ (svojrernm)
g suojieag g pom | (SHId) vwoshq
) tiows sayy 11RY 10008 79
3 teuojyesado TTE] NVHLN0) 00091 m VI "
q S T S [P DR LWy . ...
L » ‘oW 1enojjeaado |2veg “1°@Q NVHIY¥04 NVYLN04 m: SO0 0009 a%4)-1m WL 'y
] l2ueq “q S3INpadod4 183} alt-xsy
g _ N . , Sh/L1-d0d
. PI® ij2deasaa TTTTTOr T T wveadiod T Toiwdiwod~ | T TSO/09E Wi [ T T oS Wrioid 6
3 e e T U S VU .- e ~N
PI® yDL03Sa4 NVHLIH03 NVYL804 S0/09t Wil (RO INVLS 10Nl "4 ~
o
. o T T T T I evesawasan 1T T T T T T T T egnges | T wweliod” | T so/B9E Wi | T T doingis N ca
!
! ’ T evewsawesal | T T T T T T T T iguod | Twaldod T | T Tso/ogt Wei | T T Tvim “apad " SdvaVEAMIIDG P
b .Im.ll..,omm.lllqnl.ll..-lil.l T T S 1T T e .lltg-.l et S sl = weahoad L IRE )
g picuno) {eliogyeaado 2UNL* 11200SORI onm T0R00 | 0009 | 1dMAdUN J0dNS 40
4 uoyjewm ‘*3°0 ‘uorbuy SHTLSAS o
-miny PIeq -HSeN  VOUVN m
" eARy tenuey aasq w sasnns
b’ - e - - B B [ - - - O DRI Sy S IR S e - s eh - .
. (evoyyvaado NVI1N0S NV¥1Y04 SO/09¢ Wl X3dv) mind Y
-. "y —vnx..—wn-d
! ) 3| Aasieidaid | sjemiy g | T T i | W [T odean | " parmarne ke e
. {euoyresado ‘pnealian
! payeahiayu) oo
g 10 LIS
3 NW A0 'S
TV A0 VIRV | 03SS 10004 SNOTSHIA W
LR LVINGD SiMvIS STINTHTAN NOILVAN MI M) IRV SO //n s SHOD I HUSAS W
. «‘ N




" o

(e

(panujjuo)) |-gq 34nby4
aeasuung 39| (euopresoado WS1994511 NHLYN wasvd | 210w xanowie
saa ey Auam ur agqeqgeay ‘wudt]  d/d DIVSHIA
Mearar |04 wvninns | ote-xsy woive
sou 82 Lidad
T wam mvionvt]  03s53xmd SNOISHIA
NIUW I VIND SILVIS SIMMUM | wouviema | Iviow <0 MM

L}

ININS

apod
weafioad ynoge
LTR . TUTUTIN LX)
=INUAIS SIPLAOLY

SNOT LM

(SUst) wapsie

o | day)

daemy pog
pmeainug

(1vy)

W
HHSAS W0 1l

0-13

[ S AP S SO

A al




.

GENERAL & ELECTRIC

M&DSO WEST

SUFTJARE TOCLS SURYEY

IXISTING CR PLANNED: =
JATI OPERATIONAL:

2

JTYZLCPER:

CONTRACT 10, (IF APOLICABLE):

iN PUBLIC OCMAIN OR
PROPRIZTARY?: 29 »

IF PROPRIETARY,
APPROXIMATZ COST:

IMPLIMENTATION LANGUAGE(S):
IS SOURCZ C3DE AVAILABLZ? Y N

TARGET LANGUAGE(S):

SPERATICNAL ZHVIRCHMENT
=ARDWARE:

GPERATING SYST2M:

SPSTIAL REQUIREMENTS:
‘a.g., 3 28MS, craphics gackage, e23.)

FUNCTICNAL SESCRIPTION:

AZTFIAENCES:

JSAGE JESCRIPTICN: (inciude users, resuylis, and any refarencas wnich gqascrite

Jsage resyiss)

Figure 03-2
D-14

2328 SR iz

+

- S
! e e
I S R AT R

PO




iv—v*v' v

ate

o

SECTION D-4
TOOLS USED

Tne tools used in AMT, considered for use, and appliied during the development
of the AMT are identified in Table D4-1. The tools identified as used in the
AMT were actually incorporated in the software as part of the system. The
tools identified as considered for use are candidates for interfacing with the
AMT. This was not done because these systems were not available during the
span of the project. The last category of tools identified are those tools
used on the AMT, ie. these tools were utilized by the development team during
the development of AMT, SPOL is a program design language with ADA-like
constructs and concepts. The design was written in this language and some
metrics automatically appliied by the Integrated Software Development System
+1S0S). The implementation language utilized was [FTRAN, a structured FORTRAN
preprocessor developed by General Research Corporation.

J-15

AP OTDPUEE TP YR Yy hd Y GT S -~ P Avasadivnsardhonpinh PR 3 . P Wy oo




e dioad ot

Y A ARa A LS o { p———— : 4 3 N a4 - famtear .u v Aahianiatl vy v | ~adas Pt | AR R i 4,1.141 L ama 4
™ . » e T e s el N e e s e
) 1 E f . o
w33SAS Judido|2A3Q d4emM1JoS pajesbaru] (39) sas1 -
NY4LY04 Pa4nIINA3s (%49) Nwyidl -
abenbueq ub1sag weaboud pasnyonals (39) 10d4S -
:1WY NO 035N

J9zfjeuy JUSWRILIS WL |qO4d/abenbue juaueiels wl|qoad VSd/1Sd -

*suuoy 6urumeaboad
PaJan3onals Jo uojjejuauwd |dwi 3y} JA0J MO e SqUIA Bulanlonalg

49| 1dWwod-24d Pa4NIINAIS 080D

Wwa]SAS UOLIEILSLABA paIRWOINY 100D

(J¥9) sav)

0-16

‘ueaboud Aq abenbuey 0807 J0 abesn Buransesw 404 {007 3aeM]JOS

(Wey sexaj) sazh{euy abesn 080D

‘sa9jaueand 3DUSLIS UAEMISOS SIINPoUd 324N0S 10G0) WOLS

(anpand) J4azKieuy 3DUILIS 4eM)}0S

T1WY NI 3SN 304 Q3Y3AISNOD

puBUMIOD J33Ud 43Sh uLeIqQ
sa9joeaeyd jo sbuials auedwo)
sLSALeue [eANIINUS JOJ - 43SJed PIZL|LJIUIY

319110 S0239 0009H -
dWdLN Saslt -
dN9 SaSI -

1INV NI a3Sn 39 oL

7001 40 NOILJI¥JS3a

1001

abesn |00}
L-v0 2{qel

et e e S e . g




MISSION
| o
Rome Avr Development Center

RADC plans and executes nresearch, development, test and
selected acquisition proghams in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppornt within areas of technical competence
48 provided to ESD Program Offices (POs) and othen ESD
elements. The prineipal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
{onospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.

3
%
y

T T2 222 al o3 2223 23 23 23 23 23 L




